
DReX: Accurate and Scalable Dense Retrieval Acceleration via
Algorithmic-Hardware Codesign

Derrick Quinn∗
Cornell University
Ithaca, NY, USA
dq55@cornell.edu

E. Ezgi Yücel∗
Cornell University
Ithaca, NY, USA

ey273@cornell.edu

Martin Prammer
Carnegie Mellon University

Pittsburgh, PA, USA
mprammer@cs.cmu.edu

Zhenxing Fan
University of Virginia

Charlottesville, VA, USA
fjy3ws@virginia.edu

Kevin Skadron
University of Virginia

Charlottesville, VA, USA
skadron@virginia.edu

Jignesh M. Patel
Carnegie Mellon University

Pittsburgh, PA, USA
jignesh@cmu.edu

José F. Martínez
Cornell University
Ithaca, NY, USA

martinez@cornell.edu

Mohammad Alian
Cornell University
Ithaca, NY, USA

malian@cornell.edu

Abstract
Retrieval-augmented generation (RAG) supplements large language
models (LLM) with information retrieval to ensure up-to-date, ac-
curate, factually grounded, and contextually relevant outputs. RAG
implementations often employ dense retrieval methods and approx-
imate k-nearest neighbor search (ANNS). Unfortunately, ANNS is
inherently dataset-specific and prone to low recall, potentially lead-
ing to inaccuracies when irrelevant or incomplete context is passed
to the LLM. Furthermore, sending numerous imprecise documents
to the LLM for generation can significantly degrade performance
compared to processing a smaller set of accurate documents.

We propose DReX, a dataset-agnostic, accurate, and scalable
Dense Retrieval Acceleration scheme enabled through a novel
algorithmic-hardware co-design. We leverage in-DRAM logic to
enable early filtering of embedding vectors far from the query vec-
tor. An outside-DRAM near-memory accelerator then performs
exact nearest neighbor searches on the remaining filtered embed-
dings. This resulting design minimizes off-chip data movement
and ensures precise and efficient retrieval, laying the foundation
for robust and performant RAG systems that are broadly applica-
ble. Our evaluation shows that DReX delivers a 6.2-7× reduction
in time-to-first-token for a representative RAG application over a
state-of-the-art mechanism while incurring reasonable area and
power overheads in the memory subsystem.

CCS Concepts
• Computer systems organization→ Parallel architectures;
• Information systems → Language models; Top-k retrieval in
databases.

ACM Reference Format:
DerrickQuinn, E. Ezgi Yücel, Martin Prammer, Zhenxing Fan, Kevin Skadron,
Jignesh M. Patel, José F. Martínez, and Mohammad Alian. 2025. DReX: Accu-
rate and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware
Codesign. In Proceedings of the 52nd Annual International Symposium on

∗Derrick Quinn and E. Ezgi Yücel contributed equally to this work.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731079

Computer Architecture (ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3695053.3731079

1 Introduction
An increasingly essential technique in modern AI-powered appli-
cations is Retrieval-Augmented Generation (RAG) [53, 71, 75]. A
key component of RAG is taking the input task or query at hand,
converting it to a high-dimensional vector, and querying it against
a database of stored corpus vectors to find database entries that
are “similar” to the query vector. More specifically, modern RAG
systems rely on dense retrieval, a scheme where a pretrained neu-
ral network called a query encoder (𝐸𝑞) and a document encoder
(𝐸𝑑) embed queries and documents (any retrievable item) as high-
dimensional vectors. These RAG systems are optimized for vector
search and retrieval [4, 12, 13, 15, 42].

There are two main approaches to the vector search component
in a typical RAG pipeline. The first is to use exact nearest neighbor
search (ENNS), where the query vector is matched against all docu-
ment vectors using a scoring function, which typically involves a
cosine similarity computation. ENNS produces high-quality search
results suitable for use in the RAG pipeline, but this brute-force
technique incurs high latency, which can be prohibitive for many
applications, particularly those with a human in the loop.

An alternative to ENNS is to index the data vectors usingmethods
such as HNSW [49], CAGRA [52], LSH [6, 29], or IVFPQ [10], and
then use indexing to speed up the vector similarity search, resulting
in an approximate nearest neighbor search (ANNS) algorithm. These
are commonly used in practice because they have demonstrated
substantial latency reductions in the vector search step, which is
often the most computationally expensive step in the RAG pipeline.
However, ANNS’s speed comes at a cost — its accuracy is typically
lower and may pollute the RAG pipeline with irrelevant context,
which in turn can rapidly degrade the overall performance of the
AI application [21, 26, 30, 32, 33, 61, 66, 67, 85, 88].

A natural question that follows is: Can we find ways to improve
the performance of ENNS using a co-design strategy in which
algorithms could be designed specifically to exploit underlying
hardware parallelism? We take an initial step in this direction and
present a new method called Dense Retrieval Acceleration (DReX).
DReX is based on the recognition that: 1) The vector database is
nearly always stored in DRAM (to meet the latency requirements),
and there may be ways to exploit the abundant parallelism inherent
in DRAM to speed up the vector similarity task. 2) The core compu-
tational step is evaluating a cosine similarity between two vectors

1108

https://orcid.org/0009-0000-5862-6565
https://orcid.org/0009-0000-0460-8230
https://orcid.org/0009-0000-4348-236X
https://orcid.org/0009-0008-3346-2136
https://orcid.org/0000-0002-8091-9302
https://orcid.org/0000-0003-3653-2538
https://orcid.org/0000-0001-5451-5681
https://orcid.org/0000-0002-4622-2181
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731079
https://doi.org/10.1145/3695053.3731079
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695053.3731079&domain=pdf&date_stamp=2025-06-20

ISCA ’25, June 21–25, 2025, Tokyo, Japan DerrickQuinn, E. Ezgi Yücel et al.

(the query vector and a data vector), and there may be algorithmic
techniques that leverage the high data parallelism inherent in the
DRAM architecture to speed up this computation.

In this paper, we propose an algorithmic-hardware co-design
approach to this problem. Algorithmically, DReX uses “sign concor-
dance,” based on a simple idea: When computing the similarity of
two vectors, we can get a high-quality but computationally cheap
filter by using only the sign bits of the two vectors to compute an
approximate dot product. The sign bits can be precomputed and
stored in the same DRAM banks that contain the corresponding
vectors. Then, using relatively inexpensive in-DRAM logic, these
can be quickly retrieved to conduct high-quality, high-performance
dense filtering against a query concurrently across banks. The re-
sult of this in-DRAM filtering step is that many non-candidate
corpus vectors are disregarded before they even leave the DRAM
chip and are never considered by the remainder of the RAG sys-
tem. Then, the selected vectors are fetched and further scored in a
near-DRAM similarity scoring unit, which selects the final set of
nearest neighbors to pass into the remainder of the LLM. Therefore,
sign concordance has properties like ANNS in that it can be used
to reduce the amount of data that needs to be examined (in full
precision), and thus improve the overall latency; and, as our results
will show, it can deliver much higher performance at high levels of
accuracy.

This paper makes the following two major contributions:

• Embarrassingly parallel filtering (Section 3): An algorithmic-
hardware co-design for efficient and parallel filtering of large
vector databases.

• DReX (Section 5): An in- and near-DRAM accelerator combo
that implements the architectural components required for
filtering and retrieval.

Our evaluation shows that DReX outperforms the best perform-
ing ANNS schemes on CPU for a high-dimensional corpus with
batch sizes of 1 and 16 by 24 and 19× at Recall@32=0.95, respectively.
For the same workload, DReX provides 6.7× and 3.1× speedup com-
pared with the best performing ANNS schemes on GPU. This dense
retrieval speedup translates into a 6.2-7× reduction in time-to-first-
token for a representative RAG application. Additionally, DReX
incurs modest power and area overheads in the memory subsystem
while providing significant energy efficiency.

2 Background
2.1 Dense Information Retrieval in AI Systems
Large language models (LLMs) are continuously increasing in size
and parameter count, with newer models requiring significantly
more resources for training. A major limitation of pre-trained LLMs
is the lack of up-to-date information, and re-training these models
is exceedingly costly due to their growing complexity. Beyond the
high cost of training, several additional challenges arise, such as
the need to separate confidential data from training data or man-
aging terminology discrepancies. Retrieval-augmented generation
(RAG) has emerged as a promising approach to address these chal-
lenges by incorporating two main modules that enable dynamic
and contextually relevant generation [4, 12, 13, 15, 42].

E𝑞(𝑞)	=	⟨𝑞1, 𝑞2, ⋯ , 𝑞𝐷⟩
E𝑑(𝑑)	=	⟨𝑑1, 𝑑2, ⋯ , 𝑑𝐷⟩

S	(𝑞,𝑑)	=.𝑞𝑖𝑑𝑖

!

"#$

≡ E𝑑(𝑑) 0 E𝑞(𝑞) 0 cos 𝜃

E𝑑(𝑑) E𝑞(𝑞)

𝜃

Fig. 1. Visualization of dot-product similarity.

General mechanism. A RAG application combines a generative
model, usually an LLM, with a retrieval model. Modern RAG sys-
tems rely on dense retrieval, a scheme where a pre-trained neu-
ral network called a query encoder (𝐸𝑞) and a document encoder
(𝐸𝑑) embed queries and documents (any retrievable item) as high-
dimensional vectors [51, 77]. In many cases, document encoders
process each document using bag of words or related approaches,
which broadly map the term-frequency (e.g., TF-IDF or BM25) of
words to numeric feature vectors [63, 65, 68, 70]. Document en-
coders are trained to predict relevance between a query 𝑞 and docu-
ment 𝑑 , as defined by the dot-product 𝑆 (𝑞, 𝑑) = 𝐸𝑞 (𝑞) ·𝐸𝑑 (𝑑). After
training, a document encoder encodes a corpus of documents to cre-
ate a database of embedding vectors. Online, a query𝑞 is encoded by
𝐸𝑞 , and the documents are sorted based on their scores 𝑆 (𝑞, 𝑑). This
process requires dot products to be computed between 𝐸𝑞 (𝑞) and
many or all of the vectors contained in the index. Fig. 1 illustrates
dot-product similarity and its core operations. If all embeddings are
normalized to a magnitude of 1, dot-product is identical to cosine
similarity.

Performance and accuracy. Prior works have demonstrated that
both the performance and accuracy of RAG applications are heav-
ily dependent on the performance and accuracy of the dense re-
trieval phase [15, 42]. In fact, prior work reveals a complex inter-
play between the retrieval and generation phases in RAG applica-
tions [61, 85, 88], where low-quality dense retrieval can significantly
increase the LLM generation time by requiring more information
to be retrieved and sent to the LLM for generation. We corroborate
the prior work and show that including an irrelevant document in
a RAG application with a Llama-3.1-70B generative model on an
NVIDIA H100 GPU leads to a 29ms increase in LLM time-to-first-
token without contributing to end-to-end accuracy.

2.2 Similarity Search
Two primary classes of algorithms are used to perform Nearest-
Neighbor Search (NNS) within the database: exact and approximate
methods [6–10, 23, 29, 34, 35, 48, 49, 55, 78, 80]. The exact approach,
known as exact nearest neighbor search (ENNS, a.k.a. KNNS), em-
ploys a brute-force method in which the distance between a query
vector and each document in the database is calculated, selecting
the top 𝐾 most similar documents. In contrast, approximate meth-
ods, collectively referred to as approximate nearest neighbor search
(ANNS), utilize a variety of structures—such as table-based, tree-
based, and graph-based algorithms—to improve search efficiency.

ANNS limitations. Approximate Nearest Neighbor Search (ANNS)
methods, such as Hierarchical Navigable Small World (HNSW)
graphs [49] and Inverted File (IVF) [10] systems, are the prevalent
standards for retrieval tasks in dense vector spaces. Numerous ac-
celerators have been developed to optimize these schemes [18, 38,

1109

DReX: Accurate and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware Codesign ISCA ’25, June 21–25, 2025, Tokyo, Japan

1.E+0

1.E+1

1.E+2

GloVe

Deep10m
Wiki

MSM
arc

o

MSM
arco

ˢ

Sp
ee

du
p

vs
. E

xa
ct

 S
ea

rc
h

(L
og

 sc
al

e)
10²

10¹

10⁰

Fig. 2. Maximum speedup achievable by HNSW for selected datasets
in Table 1 over optimized exact search while achieving Recall@32
of 0.95, using Batch size=16, M=64, and efConstruction=256.

59, 82]. However, they exhibit significant limitations, especially in
many RAG applications. These ANNS schemes aim to reduce the
search space by indexing the relationships between corpus vec-
tors, enabling queries to be checked only against likely relevant
documents. For instance, IVF and its derivatives rely on statically
clustering the dataset to identify related vectors. Unfortunately,
as the dimensionality of vectors increases, the number of distinct
clusters grows exponentially [29, 39, 69]. This makes effective clus-
tering challenging, leading to sparser distributions of vectors across
clusters and diminished effectiveness of static clusters.

Graph-based approximate search schemes like HNSW and CA-
GRA, optimized for GPU, attempt to mitigate some of these issues
by building a navigable graph that connects each document to
its nearest neighbors, allowing for more dynamic traversal of the
search space. However, achieving high accuracy with these schemes
requires a lengthy graph construction process, and the resultant
graph introduces substantial memory overhead [87]. In addition,
HNSW indices are expensive to construct/rebuild, and such rebuilds
may be needed if the underlying documents change. Adding new
documents may require fully rebuilding the index, as they may
change the nearest-neighbor relationships between the older docu-
ments. Although using incremental HNSW index-building methods
is possible, they can degrade the quality of the search results.

We conduct an experiment to illustrate the effectiveness of HNSW
compared to ENNS. We configure parameters to ensure reasonable
index sizes and graph construction times (see experimental setup
in Section 6), and use a batch size of 16 to model a realistic RAG en-
vironment. Fig. 2 shows the maximum speedup achieved by HNSW
with a Recall@32 of 0.95 over the ENNS baseline for three different
datasets.1 The results illustrate how the effectiveness of HNSW
compared to ENNS is highly dataset-dependent. In the cases where

1Recall@K of R means that, on average across multiple queries, (100 × 𝑅)% of the
top-K documents retrieved by the ANNS algorithm overlap with the top-K retrieved
by the ENNS algorithm. Prior work has suggested that retrieving more than 25–50
documents yields diminishing returns in terms of accuracy [30]; therefore, in this
paper, we use Recall@32 as a metric to quantify the accuracy of the dense retrieval.

a Recall@32 of 0.95 is achieved, a speedup of, say, 10× may ap-
pear compelling; however, in the end-to-end execution of a RAG
application, it can be overshadowed or even turn into a slowdown
compared with a RAG application employing ENNS. This is be-
cause ENNS enables the RAG application to achieve the same or
better generation accuracy with fewer (but more precise) docu-
ments passed onto the LLM, significantly reducing LLM generation
time [85, 88]. Thus, extra time spent on accurate retrieval can yield
a net reduction in end-to-end time. Moreover, ANNS mechanisms
like HNSW often suffer higher memory consumption due to the
indexing required for approximation [14, 19, 49].

The challenge of dataset dependency in ANNS is further com-
pounded by the inefficiency of batching for ANNS. Since the sets of
embedding vectors that need to be accessed and searched for each
query within a batch are mostly disjoint, there is limited opportu-
nity to reuse embedding vectors fetched from the corpus across
queries within the batch. As a result, while ENNS can efficiently
reuse data fetched from the corpus across all queries in a batch,
ANNS gains minimal benefit from larger batch sizes, which are
common in real-world RAG applications.

ENNS limitations. ENNS methods can address certain weaknesses
inherent in ANNS due to their simpler data layouts. Exact search
does not suffer from the overheads associated with graph traversal,
and reusing corpus vectors across a batch is natural ENNS’s se-
quential data access pattern. Additionally, ENNS can easily handle
adding and removing corpus vectors, which is highly desirable in
dynamic RAG environments.

However, exact search methods have distinct drawbacks in the
context of RAG: 1) Inflexibility. An exact-search-only accelerator
cannot trade small amounts of accuracy for performance gains.
This limitation is especially troublesome in scenarios with small
batch sizes, where the potential speedup from filtering would be
significantly higher. 2) Non-opportunism.While some datasets are
challenging for existing approximate search schemes to filter, many
datasets are substantially easier to handle. Existing approximate
search schemes show sublinear scaling of runtime with corpus size
and a fixed accuracy, implying that filtering generally becomes
easier as corpora grow larger. For these easy-to-filter datasets, an
exact-search-only accelerator cannot opportunistically exploit this
to achieve higher performance.

3 Algorithmic-Hardware Co-design for
Accurate and Scalable Dense Retrieval

In this work, we aim to develop a dense retrieval scheme that
embodies the following seemingly conflicting properties: accurate,
general, flexible, scalable, fast, and resource-efficient.

We begin with the clean slate of ENNS as our dense retrieval
algorithm. ENNS is the most accurate, general (retrieving exact top-
k documents regardless of the dataset), and semi-resource-efficient
(it can efficiently operate on a vector processor without requiring
complex indexing while achieving perfect data reuse across queries
within a batch). However, ENNS is extremely memory-bound. From
this foundation, we systematically enhance ENNS tomake it flexible,
scalable, and fast, all while preserving its accuracy and generality,
and significantly improving its resource efficiency by alleviating its
memory-bound limitations.

1110

ISCA ’25, June 21–25, 2025, Tokyo, Japan DerrickQuinn, E. Ezgi Yücel et al.

d2

d1

d2

d1

d2

d1

QV
EV

Highly Similar DissimilarSomewhat Similar

QV
EV

QV

EV

Fig. 3. Illustration of 2D-space cosine similarity. QV and EV stand
for query and embedding vector, respectively. The more similar an
EV is to QV, the smaller the angular distance between them. Sign
concordance along each dimension provides a good first approxi-
mation.

Recall that the core idea of ANNS mechanisms is to reduce the
search space by relying on offline clustering or index graph genera-
tion. However, as discussed in Section 2.2, such offline methods sac-
rifice generality, slow down retrieval at high accuracy targets, and
require large storage capacity and upfront computation for index
creation. Modern embedding models used for dense retrieval rely
on inner-product or cosine similarity, due to dot-product’s natural
compatibility with cross-entropy loss during training [24, 36, 83].
Therefore, maximum inner product search and maximum cosine
similarity search have quickly risen to prominence as two of the
preferred choices for vector search [9, 36]. Further still, many of
these embedding vectors demonstrate distributions spanning both
positive and negative values, centered on or near zero.

Note that the sign bit of each dimension can indicate whether two
vectors occupy the same subspace within a given Cartesian space.
For instance, in a simple 2-dimensional Cartesian space (Fig. 3), vec-
tors QV and EV have a good chance of being similar when the sign
bits of both dimensions match (e.g., both in the top-right subspace).
Conversely, vectors are likely dissimilar when their sign bits are
opposite (e.g., in diagonally opposite subspaces). We leverage this
intuitive observation to implement an online mechanism capable
of reliably and quickly filtering vectors by comparing the sign bits
of embedding vectors against those of query vectors. This filtering
scheme, which we call Sign Concordance Filtering (SCF), is detailed
in Section 4.

Although SCF significantly reduces the search space, it requires
comparing one bit per dimension of each embedding vector with
the corresponding query vector’s bits before initiating the search.
As this operation is performed online, it resides on the critical path
of dense retrieval. If not executed efficiently, computation risks
adding complexity and causing slowdowns instead of accelerating
dense retrieval.

Executing SCF-enhanced dense retrieval on a CPU can severely
limit its performance potential due to two key challenges: (1) For
16-bit quantized embedding vectors, reading only the sign bits from
memory still requires 1/16th of the bandwidth needed to read all
embedding vectors. Given the billion-scale embedding vector data-
base size and high dimensionality, even this reduced data volume
can constitute a bottleneck performance and scalability. (2) Despite
filtering a large portion of the embedding vectors, transferring
even a fraction of them to the CPU for processing limits scalabil-
ity [81], particularly as corpus sizes continue to grow for future
RAG applications.

Name 𝐷 𝑁 Data Source Scheme
Wiki 768 35,678,076 Wikipedia Bi-Encoder [36]

MSMarco 768 8,841,823 Web Bi-Encoder [5]
MSMarcos 768 113,419,636 Web Bi-Encoder [50]
GloVe 100 1,183,514 Social Media GloVe [60]

Deep10m 96 9,990,000 Images GoogLeNet
Table 1. Datasets used for dense retrieval.

To overcome these limitations and fully unlock the potential of
Sign Concordance Filtering (SCF), we introduceDReX, a system that
co-designs the SCF-enhanced ENNS algorithm with in-memory and
near-memory processing architectures. Section 4 elaborates on the
merits of SCF, and Section 5 explores the architectural innovations
in DReX that leverage SCF to enable an accurate, general, flexible,
scalable, fast, and resource-efficient dense retrieval scheme.

4 Sign Concordance Filtering
A sign concordance kernel SCF(𝑄𝑉, 𝐸𝑉 , TH) is true if vectors QV
and EV with𝐷 dimensions meet a minimum threshold TH of match-
ing sign bits:

SCF(QV , EV , TH) =
(
TH ≤ 𝐷 −

𝐷∑︁
𝑖=1

(SQV [𝑖] ⊕ SEV [𝑖])
)

where SQV [𝑖] is the sign bit of 𝑖𝑡ℎ dimension of QV , SEV [𝑖] is the
sign bit of the 𝑖𝑡ℎ dimension of EV , and ⊕ is the XOR operation.
This expression is equivalent to counting the number of dimensions
that have matching sign bits, and if that number is greater than the
threshold, then we keep the vector. Otherwise, we filter it.

The use of a sign concordance filter requires specifying a filter
threshold, which enables a trade-off between accuracy and filtering
ratio. Specific filter ratios are achieved by experimentally modifying
the threshold. Overall, by comparing only the sign bits of vector
dimensions and employing the right threshold, we can quickly
estimate whether two vectors are similar or not.

A key advantage of the sign concordance filtering is that filtering
can be performed online, and the sign concordance kernel requires
simple and regular logic, namely a bitwise XOR between the sign
bits of each corpus vector, a popcount (Hamming weight) of the
result, and a threshold comparison (We describe our hardware
implementation later in Section 5.3). To target a specific accuracy,
the threshold can be set by inspecting a sample of true top-k results.
For instance, to achieve Recall@32=0.95, we set the threshold to the
95th percentile of sign-bit match counts observed across a sample of
true Top-32 neighbors. Additionally, the threshold could be flexibly
adjusted online for corner cases and datasets with variable phases.
Such simple tuning for trading accuracy for performance contrasts
the rigid index creation and offline filtering of existing ANNS.

Although larger batches reduce the overall filtering ratio across
all queries within the batch, as we explain in Section 5,DReX reuses
vectors across all queries within a batch to minimize filtering over-
head and improve retrieval accuracy.

We evaluate the accuracy and filtering ratio of sign concordance
filtering on four different datasets summarized in Table 1. Fig. 4
shows the trade-off between recall@32 and filter ratio for all datasets,

1111

DReX: Accurate and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware Codesign ISCA ’25, June 21–25, 2025, Tokyo, Japan

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

0.75 0.80 0.85 0.90 0.95 1.00

Fi
lte

r R
at

io
 (L

og
 sc

al
e)

Recall@32

MSMarcoˢ

Wiki

MSMarco

Deep10m

GloVe

10⁶

10⁵

10⁴

10³

10²

10¹

10⁰

Fig. 4. Filter Ratio vs. Recall@32 of Sign Concordance for various
datasets at batch size 1.

with various thresholds. As we increase the threshold (from left to
right), the accuracy improves while the filtering ratio decreases. As
shown, the sign concordance filtering is both effective and flexible,
substantially reducing the search space while allowing for a smooth
trade-off between recall and filter ratio via the choice of the filtering
threshold at runtime.

As evident in Fig. 4, sign concordance filtering is more effective
when filtering datasets of higher dimensionality. For the higher-
dimensional BiEncoder-embedded datasets such as Wiki, sign con-
cordance filtering provides an impressive filtering ratio of 1:4,500
at 0.95 Recall@32. This filtering ratio outperforms HNSW by over
200×. The key benefit of sign concordance filtering is its online
filtering capability, which accommodates all datasets without losing
accuracy.

5 DReX Architecture
5.1 Overview
Fig. 5 provides an overview of the system integration and archi-
tecture of DReX. DReX is a compute-enabled CXL type-3 device
whose internal memory capacity is part of the host address space.
The key benefit of having a flat address space for DReX enabled by
CXL is that the CPU can directly use load/store instructions to up-
date the contents of the vector database, eliminating the overhead
of setting up DMA for transferring embedding vectors and other
metadata between host memory and DReX memory. DReX also
leverages CXL.mem to enable the CPU to efficiently communicate
with near-memory accelerators through the load/store interface
and reduce the overhead of offload.

DReX implements its internal memory capacity using LPDDR5X
packages, which strike a balance between DDR and GDDR in terms
of capacity and internal memory bandwidth [57]. Each LPDDR5X
package provides 64 GB of DRAM capacity and eight 16-bit chan-
nels, delivering a total of 136GBps of memory bandwidth. Each
LPDDR5X channel consists of 2 ranks, each rank consists of 2 dies,
and each die has 32 banks [57]. Consequently, with only eight
LPDDR5X packages, DReX can achieve 512GB of internal mem-
ory capacity and over 1 TBps of internal bandwidth. In contrast,
achieving 512GB of capacity using high-capacity ×4 DDR5 devices
would require 32 devices and a large CXL device form factor while
yielding only 89.6GBps of internal memory bandwidth. The high

Fig. 5. System integration and overall architecture of DReX. Shaded
areas indicate hardware additions.

internal memory bandwidth is essential for DReX’s near-memory
acceleration of similarity score evaluation (Section 5.4).
Why not HBM? HBM3 supports capacities of up to 24GB and
bandwidths of 819GBps. To implement a 512-GB DReX, we need
22 HBM3 packages. The base die area of an HBM3 chip is approxi-
mately 121mm2. Integrating this many HBM chips on an interposer
would require 2.662mm2 of interposer area solely for HBM. For
context, the NVIDIA H100 chip (just the compute die) is around
814mm2.

The LPDDR5X DRAM chips are modified to integrate a PIM
Filtering Unit (PFU) in the periphery of each bank, enabling sign
concordance filtering on the sign bits of embedding vectors stored
in the bank. Each LPDDR5X package connects to a local near-
memory accelerator (NMA) chip through eight high-bandwidth
LPDDR channels. DReX implements a highly optimized and perfor-
mant dense retrieval acceleration by leveraging collaborative PIM
filtering, NMA similarity scoring, and CPU-based aggregation.

At a high level, performing dense retrieval on DReX involves
four phases:
Prefilling DReX with a specific data layout (Section 5.2). This
phase occurs offline and is not part of the critical path for dense
retrieval.
Query vector provision. The CPU provides DReX with a batch of
query vectors by writing them into a memory-mapped I/O (MMIO)
register using the CXL-enabled load/store interface in each near-
memory accelerator (NMA).
Independent processing by NMAs. The NMAs independently
execute the processes of filtering (Section 5.3), similarity score
evaluation, and top-k evaluation (Section 5.4) on their local corpus
(i.e., embedding vectors).
Aggregation of results. Once all the NMAs complete their top-k
evaluations of their local corpus, the CPU is notified to aggregate
the partial top-k lists from each NMA (and multiple DReX units, in
the case of multi-DReX dense retrieval) to produce a single top-k list.
The list is then used by the CPU to retrieve the actual documents
from the host memory or SSD.

1112

ISCA ’25, June 21–25, 2025, Tokyo, Japan DerrickQuinn, E. Ezgi Yücel et al.

Bank number j

8192 bits/row (64 col)

Corpus Vectors
(61,680 rows)

65
53

6
Ro

w
s

Corpus Sign bits
(3,856 rows)

Col. 63Col. 2:62Col. 1Col. 0

SEV0:127[63]●●●SEV0:127[1]SEV0:127[0]Row 0

SEV0:127[127]●●●SEV0:127[65]SEV0:127[64]Row 1

SEV0:127[191]●●●SEV0:127[129]SEV0:127[128]Row 2

●●●●●●

SEV0:127[767]●●●SEV0:127[705]SEV0:127[704]Row 11

SEV128:255[63]●●●SEV128:255[1]SEV128:255[0]Row 12

SEV127[0]SEV2[0]SEV1[0]SEV0[0]

Fig. 6. Sign bit of Embedding Vectors (SEVs) layout in DRAM Banks.

5.2 DRAM Data Layout
Before any dense retrieval offload to DReX, the CPU organizes the
embedding vectors and their sign bits in a specific manner to en-
sure efficient and high-performance dense retrieval. The CPU uses
mmap to map the entire DReX address space into a contiguous
range of the CPU’s virtual address space. It employs explicit cache
maintenance instructions, such as CLFLUSH, to ensure that the
NMA has access to the up-to-date data during dense retrieval of-
fload. Once laid out, these data remain stable unless the document
database changes (relatively infrequent).
Layout of sign bits. As shown in Fig. 6, each LPDDR5X bank in
DReX contains several rows that store both embedding vectors and
the sign bits of all elements within each embedding vector. Without
loss of generality, we describe DReX here as using 768-dimension
embedding vectors. (The vector dimension is a configurable pa-
rameter and DReX can support any vector dimension.) We pack
sign bits in memory as follows: First, the sign bits for dimension
0 of 128 vectors are stored contiguously as a block, followed by
the sign bits for dimension 1 of those 128 vectors, and so on for
the 768 dimensions. The pattern then repeats itself for another 128
vectors, and so forth. This layout aligns 128-bit blocks with the bank
transfer rate, enhancing filtering efficiency within tCCD during
sequential data access. Moreover, it facilitates an output stationary
XOR-accumulate hardware for efficiently evaluating the concor-
dance score of 128 vectors in 768 column accesses concurrently
across all DRAM banks. The number of clock cycles required to
evaluate the concordance score of 128 vectors in parallel varies with
the vector dimension; for dimensions other than 768, a different
number of cycles is needed. In Section 5.3, we discuss in more
detail how this data layout enables efficient and high-performance
PIM implementation of sign concordance filtering.
Layout of embedding vectors. After the in-memory sign con-
cordance filtering phase, the surviving embedding vectors need
to be sent to the NMA for similarity scoring and top-k evaluation.
Note that, since the sign bits of only the local embedding vectors
for each LPDDR5X package are stored within that package, it is
guaranteed that the NMA accesses to the filtered embedding vec-
tors remain local to the same LPDDR5X package. However, because
of the filtering, the candidate embedding vectors will be scattered
across different physical addresses within the LPDDR5X package.
Therefore, it is impossible to know the physical location of the un-
filtered embedding vectors beforehand, and the NMA must access

Addr.
[382-383]…Addr.

[194-195]
Addr.

[192-193]
Addr.

[190-191]…Addr.
[2-3]

Addr.
[0-1]

EV1[760]

…

EV1[8]EV1[0]EV0[760]

…

EV0[8]EV0[0]CH0

EV1[761]EV1[9]EV1[1]EV0[761]EV0[9]EV0[1]CH1

EV1[762]EV1[10]EV1[2]EV0[762]EV0[10]EV0[2]CH2

EV1[763]EV1[11]EV1[3]EV0[763]EV0[11]EV0[3]CH3

EV1[764]EV1[12]EV1[4]EV0[764]EV0[12]EV0[4]CH4

EV1[765]EV1[13]EV1[5]EV0[765]EV0[13]EV0[5]CH5

EV1[766]EV1[14]EV1[6]EV0[766]EV0[14]EV0[6]CH6

EV1[767]EV1[15]EV1[7]EV0[767]EV0[15]EV0[7]CH7

Fig. 7. Interleaving across eight memory channels assuming 768-
dimension vectors. Access to each embedding vector is evenly dis-
tributed across all eight channels. EV𝑖[k] denotes the kth dimension
of embedding vector 𝑖.

sparse embedding vectors locally stored in its LPDDR5X package.
The performance of the NMA directly depends on the efficiency
of accessing these sparse embedding vectors; therefore, we aim to
minimize the time required to fetch each embedding vector. Be-
cause the NMA has global access to all eight LPDDR channels of
the package, minimizing the embedding vector access time requires
evenly interleaving the access across all eight channels. This is the
rationale for the proposed data layout for the embedding vectors
presented in Fig. 7.

5.3 In-memory Sign Concordance Filtering
We introduce a PIM Filtering Unit (PFU) integrated into each DRAM
bank. The PFU is designed to calculate concordance scores for vector
embeddings and identify the embedding vectors that should be
included in the similarity score evaluation. As discussed in Section 4,
concordance scores are defined as the sum of the bitwise XOR
results between the sign bits of the query vectors and embedding
vectors. If the concordance score exceeds a threshold value, then
the embedding vector is a candidate for search. Otherwise, it is
filtered. By copying the sign bits of the embedding vectors and
organizing them in a column-major format within different DRAM
banks (Section 5.2), these bitwise XOR and aggregation operations
can be efficiently performed inside the DRAM banks in parallel,
using minimal additional logic integrated into the DRAM bank
peripheries.

Filtering is conducted in multiple epochs, with each epoch pro-
cessing 128 vectors in parallel per bank (128×128 vectors per chan-
nel and 128×128×8 per LPDDR5X package). In each epoch, the PFU
generates a 128-bit bitmap, marking the embedding vectors to be
searched by setting the corresponding bit to 1. The NMA controller
maintains bookkeeping to map each bitmap to its corresponding
embedding vector space.

The NMA identifies each vector and its corresponding bitmap
using an ID address. This ID address establishes a mapping between
the bank where the embedding vector is stored, the position of the
vector in the bitmap, and a pointer to the epoch number that filters
the embedding vector. This mapping requires 32 bits: the seven
least significant bits represent the bank number out of the 128
banks in each channel, the next seven bits represent the vector’s
index within the 128-bit bitmap, and the 18 most significant bits
correspond to the epoch number.

1113

DReX: Accurate and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware Codesign ISCA ’25, June 21–25, 2025, Tokyo, Japan

Fig. 8. Structure of the PIM Filtering Unit (PFU) integrated into
each DRAM bank. SQV, SEV, and CSB stand for Sign bit of Query
Vectors, Sign bit of Embedding Vectors, and Concordance Score
Buffer, respectively. The subscript is the vector ID, and the number in
brackets is the dimension number. We consider a vector dimension
of 768 in this incarnation of a PFU.

Fig. 8 illustrates the datapath of the PFU for a single bank. The
PFU logic is designed to pipeline the column access, partial con-
cordance score calculation, and bitmap generation for 128 vectors
across N column accesses, where N equals the vector dimension.
Our evaluations show that evaluating each bitmap takes approx-
imately 2 µs, which is roughly the same time required to read all
the bitmaps (128×128 bits) from 128 banks within a channel to the
NMA. This creates a near-perfect pipeline for filtering and bitmap
transfers to NMA.

As shown in Fig. 8, the PFU supports a batch size of up to 16.
Before in-memory filtering begins, the NMA broadcasts the sign bits
of up to 16 query vectors to all PFUs. During each DRAM column
access, the PFU receives 128 sign bits from the same dimension
of 128 different embedding vectors (Section 5.2). To process this
data, the PFU implements 128 XOR gates and 128 output-stationary
accumulators. As depicted in Fig. 8, these accumulators consist of a
12-bit Concordance Score Buffer (CSB) and a 12-bit adder.

Over 768 column accesses (corresponding to the vector dimen-
sion), which constitute one epoch, the same XOR-accumulator logic
compares the sign bits of each embedding vector with a query vec-
tor and updates the CSBs if there is a match. At the end of the
epoch, a bitmap is generated based on the values in the CSBs. To
avoid implementing additional registers and comparators for stor-
ing the threshold value and comparing it against CSB values at the
end of each epoch, the NMA initializes each CSB at the start of
the epoch to 4, 096 −Threshold (4,096 = 212 bits). At the end of the
epoch, the NMA simply checks the sticky overflow bit of each CSB
to determine whether the corresponding embedding vector should
be filtered. This works because if any of the CSBs count more than
Threshold, then it would overflow, and the sticky overflow bit flags
that CSB.

To further optimize the process, as shown in Fig. 8, the design
reduces the overflow bits of the 16×128 CSBs into a single 128-bit
bitmap by performing a bitwise OR operation across the overflow
bits within a batch. This allows the PFU to return a single 128-
bit bitmap instead of 16 separate bitmaps. The rationale behind
this design decision is that the most expensive operation in per-
forming similarity scores for query vectors in a batch is reading
embedding vectors from DRAM. This operation does not affect the

performance of batched dense retrieval when the similarity scores
for all query vectors in the batch are computed using the same
embedding vector already fetched. This approach not only reduces
the storage overhead and complexity of the PFU but also enhances
overall performance and energy efficiency. The overhead of trans-
ferring multiple bitmaps from all banks to the NMA is significantly
higher than the additional MAC operations performed during the
similarity score evaluation.

5.4 Near-memory Acceleration of Similarity
Score and Top-K Evaluation

As shown in Fig. 5, DReX implements a near-memory accelerator
(NMA) chip for each LPDDR5X package. Each NMA implements
seven key components: Memory Controllers (MC), Address Gen-
eration Unit (AGU), Query ScratchPad Memory (SPM), Address
SPM (ASPM), Similarity Score Unit, Top-K Unit, and Controller
Unit. The primary reason we did not integrate the NMA logic
into the CXL controller and instead distributed the logic near each
LPDDR5X package is twofold: (1) to reduce the distance that data
needs to move off-chip through LPDDR channels and on-chip be-
tween the memory controllers and the accelerator units. This re-
duction in the distance between the memory controllers, NMA
PHYs, and the LPDDR5X package allows the NMA to perform high-
bandwidth, low-latency, and low-energy data accesses to DRAM.
(2) Each LPDDR5X package implements eight memory channels,
and connecting eight packages to a single chip would require im-
plementing 64 LPDDR channels along the shoreline of a single
chip [2, 22, 46, 54]. Such a centralized design would necessitate
a large monolithic near-memory accelerator to accommodate the
significant number of escape pins at the chip’s shoreline, which
would substantially increase the cost of building DReX.

A back-of-the-envelope calculation shows that if each LPDDR5X
PHY occupies 2.5mm of shoreline (based on die shots of the Apple
M2 [58] in 5 nm technology), a single chip would need a minimum
perimeter of 160mm to support 64 PHYs. Assuming a rectangular
chip with a golden ratio, the die area would need to be at least
1.512mm2, exceeding the state-of-the-art lithography reticle limit.
By limiting each NMA to connect to a single LPDDR5X package
with eight channels, each NMA needs only 20mm of shoreline,
which can be satisfied by a rectangular chip with a golden ratio and
area of less than 24mm2.

With the data mapping explained in Section 5.2 and the dis-
tributed NMA organization of DReX, NMAs can independently
filter and perform similarity score evaluations for the unfiltered
embedding vectors without requiring any inter-NMA communica-
tion. This area-efficient NMA architecture is enabled through the
co-design of the filtering algorithm, software data placement, and
in-memory and near-memory processing principles.

As mentioned in Section 5.1, after the query vectors are broad-
cast from the CPU to the NMAs, the NMAs first initiate the filtering
phase and then proceed with similarity score computation and
top-k evaluation of the candidate embedding vectors. During the fil-
tering phase, PIM Filtering Units (PFUs) perform sign concordance
filtering in multiple epochs, each filtering a group of 128 embed-
ding vectors and generating a bitmap with entries corresponding
to each vector in the group. At the end of each epoch, the bitmap is

1114

ISCA ’25, June 21–25, 2025, Tokyo, Japan DerrickQuinn, E. Ezgi Yücel et al.

ASPM High-
Water Mark

Detected

Address SPM Empty,
Offload Incomplete

Host Writes
Offload Context

and Rings
Doorbell

Address SPM
Empty, Offload

Complete

Idle

In-Memory
Filtering Phase

Near-Memory
Similarity

Score Phase

AGU

Controller
unit

PFUs

Epoch 1 Epoch n

Address SPM OK? To Near-Memory
Similarity Score..

Start

Fig. 9. Finite state machine implemented by the Controller Unit in
each NMA, and breakdown of the filtering phase into 𝑛 epochs.

transferred to the NMA, and the next epoch begins immediately,
concurrent with the bitmap transfer to the NMA. The memory con-
trollers on the NMAs orchestrate all-bank filtering as well as bitmap
transfers from each bank and channel to the NMA chip. Once the
bitmap is received by the NMA, the Address Generation Unit (AGU)
scans the bitmap, generates the physical addresses of the embed-
ding vectors corresponding to the set bits, and stores them in an
Address ScratchPad Memory (Address SPM). These addresses are
retained for later use during similarity score computation and top-k
evaluation.

Because the Address SPM has limited capacity, the number of
continuous filtering epochs depends on the filtering ratio of sign
concordance filtering, the size of the Address SPM, and the size of
each vector. In general, each LPDDR5X package can store 64GB /
(2 B × Vector_Dimension) vectors. Considering a vector dimension
of 768, this equates to amaximum storage capacity of approximately
45 million embedding vectors per LPDDR5X package. Thus, each
vector can be uniquely addressed using a 26-bit address local to
each LPDDR5X package. To accommodate datasets with various
vector dimensions efficiently, we design the Address SPM to be 4-bit
addressable. In the current implementation of DReX, the Address
SPM is set to 2MB, allowing it to store up to 524,288 embedding
vector addresses for 768-dimensional vectors.

Because corpus vectors are laid out to fully utilize bandwidth
for similarity score computation, it is not possible to pipeline in-
memory filtering operations (which require reading sign bits and
sending out bitmaps from all banks) with the reading of vectors that
survive the filtering operation. One option would be to perform
sign concordance filtering immediately followed by similarity score
computation. However, sign concordance filtering involves both
the in-memory computation of bitmaps and address generation,
which can be pipelined if performed repeatedly. Consequently, we
serialize the filtering and similarity score evaluation phases.

Fig. 10. Structure of NMA Similarity Score Unit.

Fig. 9 shows the FSM of the NMA Controller Unit and details the
multi-epoch near-memory filtering and the alternation between
the in-memory filtering and near-memory similarity score evalua-
tion phases until the offload is complete. During the near-memory
similarity score evaluation, the NMA reads embedding vector ad-
dresses from the Address SPM and fetches the vectors one by one
over eight LPDDR5X memory channels. As discussed in Section 5.2,
the embedding vectors are interleaved across all eight channels to
saturate the full 136GB/s memory bandwidth of the package.

Fig. 10 illustrates the internal architecture of the Similarity Score
Unit. As embedding vectors are received from the DRAM in parallel
across eight channels, they are buffered in the input buffer of the
Similarity Score Unit and distributed to up to 16 processing engines.
Each processing engine consists of 68 MAC units with local out-
put buffers and an adder tree to reduce the 68 outputs to a single
similarity score. The MAC and reduction operations are pipelined.
Each processing engine computes the similarity score between one
query vector and all embedding vectors fetched from DRAM.

The reason for providing 68 16-bit MAC units per processing
engine is to sustain the 136GB/s DRAM bandwidth. The MAC
units operate at 1GHz and must perform 68 MAC operations on
68×16-bit embedding vector dimensions received from memory
every 1 ns. For a vector dimension of 768, after 12 clock cycles
(768/68), the output register of each MAC unit contains a partial
similarity score, which is reduced to a single score using the adder
tree. The reduction phase is pipelined and performed concurrently
with the MAC operation for the next embedding vector. Once the
partial scores are reduced to a single similarity score, it is sent to the
Top-K Unit, which maintains an ordered list of the top 32 document
IDs.

6 Methodology
We build an end-to-end evaluation framework that includes cycle-
accurate simulation of DRAM using DRAMSim3 [43], timings gath-
ered from RTL synthesis, and real system measurements. We im-
plement RTL designs for the PIM Filtering Unit (PFU), Similarity
Score Unit, and Top-K Unit and synthesize them in TSMC’s 16 nm
technology node with Synopsis Design Compiler. We then scale
PFU results to 7 nm [56, 72]. Logic in DRAM technology is approx-
imately ten times less area-efficient [20] than regular logic; thus,

1115

DReX: Accurate and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware Codesign ISCA ’25, June 21–25, 2025, Tokyo, Japan

Device Description

CPU
16 × Intel Xeon Max 9462 3.5GHz, SMT off
8 × 128GB DDR5-4400 DRAM
3.5 TFLOP/s, 282GB/s

GPU
NVIDIA H100 SXM
80GB HBM3
989 TFLOP/s, 3.35 TB/s

DReX
(Simulated)

8 × NMA , 8,192 × PFU
512GB LPDDR5X
26.11 TFLOP/s, 1.1 TB/s (NMAs), 104.9 TB/s (PFUs)

Table 2. System configuration used for measurements.

we scale the area of the PFU correspondingly in our evaluation. For
the Query SPM and Address SPM, we adopt the area (0.013 µm2

per bit) and power metrics (50 fJ per bit) from Dally, Turakhia, and
Han [17].
Modeling PFUs.We use LPDDR5 timing reported in Ramulator
2.0 [47], along with RTL synthesis, to derive the time required
for the bank-level PFU to compute bitmaps (1.25𝑑 ns), for reading
bitmaps into the near-memory accelerator (120.4 ns), and for ad-
dress generation within the memory controller (1024 ns). We use
DRAMSim3 to measure the time needed to read traces of embed-
ding vectors into the NMA for similarity score evaluation and use
RTL synthesis again to determine the time required to perform the
dot products and top-k sorting.
DReX Simulator.We augment the cycle-approximate simulator
for IKS [61] to incorporate PFU timings and model the more com-
plex pipeline (e.g., filling the ASPM results in a bubble in memory
bandwidth utilization). We also modify the analytical model for
similarity-score performance, since IKS uses a different NMA Sim-
ilarity Score Unit architecture and data layout. In particular, we
gather traces for each dataset and batch size and collect timing
results using DRAMSim3. We do not modify the implementation of
the final top-k aggregation since it is identical to IKS’s.
Comparisons with Other Systems. Table 2 compares the system
configurations and compute appliances (real or simulated) used for
evaluations. We also compare DReX with ANNA [41], which is an
IVF-PQ accelerator. We construct a first-order model to determine
an upper bound for ANNA’s performance. Each ANNA unit is
defined based on 𝑁SCM , 𝑁cu , and 𝑁𝑢 parameters: 𝑁SCM defines
the number of similarity computation modules, 𝑁cu represents
the number of computation units responsible for constructing the
look-up tables and performing cluster filtering, and 𝑁𝑢 defines the
number of codebook entries that can be sum-reduced per cycle.
ANNA sets 𝑁SCM = 16 and 𝑁𝑢 = 64. ANNA also selects𝑀 = 𝐷/4
(representing an 8:1 compression ratio) and chooses 𝑁 = 8 for 2𝑁 =

256 codebook entries. ANNA was evaluated using |𝐶 | = 250 and
10, 000 for million- and billion-scale corpora, respectively. Similarly,
we use |𝐶 | = 250 for the GloVe, Deep10m, and MSMarco datasets,
and set |𝐶 | = 10, 000 for MSMarcos and Wiki. We validated this
performance model on the side by reproducing key results reported
in the original ANNA paper [41].
Software configuration. We use the Faiss [31] and CUVS [64]
libraries to measure HNSW, IVF-SQ, and CAGRA performance on
CPU and GPU. For HNSW on CPU, we use Faiss’s IndexHNSWFlat,
and for CAGRA on GPU, we use CUVS. For IVF-SQ and IVF-PQ,
we use Faiss’s IndexIVFScalarQuantizer and IndexIVFPQ, and their

GPU equivalents. We use 4-bit scalar quantization for IVF-SQ. We
also perform a CPU-based top-k refinement phase. For all approxi-
mate search schemes, we sweep the design space to find appropri-
ate parameters. For IVF-SQ, HNSW, and CAGRA, respectively, we
adjust the n_probe, ef_search, and itopk_size search parameters,
which provide a trade-off between accuracy and speed, in order to
maximize throughput while achieving an accuracy target.
Corpora. Prior works [9, 80] have shown that leading ANNS
schemes show vast differences in search space reduction across
different corpora. As a result, it is critical to ensure that we evaluate
our filtering scheme and architecture on datasets that are relevant
for RAG. In particular, we construct three corpora based on realistic
RAG datasets embedded using bi-encoder models. For comparabil-
ity to prior work, we also use two datasets popular for evaluating
existing ANNS accelerators.
Wiki. To examine the case of a model fine-tuned for a specific
application, we rely on a corpus designed for evaluating question-
answering RAG applications with Wikipedia as the corpus. Meta’s
KILT benchmark divides Google’s Natural Questions dataset into
train (nq-train) and validation (nq-dev) sets, containing a query,
answer, and relevant documents. Using this approach, we fine-
tune a BERT-base (uncased) model to predict relevance between
a passage and a given query. Following the technique proposed
by Karpukhin et al. [36], we construct the document corpus by
dividing Wikipedia into 100-token passages and encoding with the
fine-tuned BERTmodel.We then create query vectors by embedding
the queries of the nq-dev set, for a total of 2,837 vectors.
MSMarcos and MSMarco. We adopt open-source corpus and em-
bedding models for this use case, which also facilitates reproducibil-
ity. In particular, we use embeddings for segmented and nonseg-
mented versions of the MSMarco-V2.1 [11] dataset. Dataset gran-
ularity can shift the burden between the retrieval and generation
phases of RAG, making it important to study the impacts of seg-
mentation. We denote embedded versions of the segmented and
nonsegmented MSMarco-V2.1 dataset as MSMarcos and MSMarco,
respectively. For MSMarcos, we use embeddings generated via the
Snowflake Arctic Embed M V1.5 embedding model, which is fine-
tuned from the BERT-base bi-encoder model for retrieval. This cor-
pus served as the knowledge source for TREC RAG [62], where they
implemented segmentation using a sliding-window approach. For
the nonsegmented MSMarco, dataset documents are much longer,
necessitating the use of an embedding model with a longer context
length. In particular, we use the Nomic Embed Text V1.5 model,
also fine-tuned from BERT-base. To generate query vectors for MS-
Marco and MSMarcos, we follow documentation from Snowflake
and Nomic, respectively, to embed MSMarco queries using the re-
trieval model used to generate the corpus, resulting in a total of
1,010,916 queries.
GloVe. To allow for comparison with prior works, and to evaluate
sign concordance filtering on relatively small dimensional vectors,
we use the popular GloVe dataset of 1,183,514 100-dimension vec-
tors. FollowingAumüller, Bernhardsson, and Faithful’s approach [9],
we use GloVe’s test (10,000 vectors) as queries.
Deep10m.We use the provided sample set of the Deep1b dataset,
which contains 9,990,000 96-dimension vectors. Again, following
Aumüller, Bernhardsson, and Faithful’s approach [9], we use Deep
-1b’s test set (10,000 vectors) as queries. We include Deep10m and

1116

ISCA ’25, June 21–25, 2025, Tokyo, Japan DerrickQuinn, E. Ezgi Yücel et al.

270×
1246× 24×

19×

132×

424× 29× 5×
34× 22×

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6
IVF-SQ HNSW DReX (ENNS)ᴿᵉᶜᵃˡˡ⁼¹ DReX10⁶

10⁵

10⁴

10³

10²

10¹

10⁰

59×

413×
17×

30×

37×

123×
36× 8×

17×
15×

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1 16 1 16 1 16 1 16 1 16

Wiki MSMarco MSMarcoˢ GloVe Deep10m

10⁶

10⁵

10⁴

10³

10²

10¹

10⁰

10⁶

10⁵

10⁴

10³

10²

10¹

10⁰

Recall@32 = 0.95

Recall@32 = 0.80

Q
ue

rie
s/

se
c

(L
og

 sc
al

e)

(a) CPU

41×
101× 6.7×

3.1×

32×
78× 14×

2.5×
4.5×

0.9×

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6
ENNSᴿᵉᶜᵃˡˡ⁼¹ IVF-SQ CAGRA DReX

10⁶

10⁵

10⁴

10³

10²

10¹

10⁰

*

*

*

*

12×

18×
4×

4×

6×

9×
20× 3×

7×
2×

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1 16 1 16 1 16 1 16 1 16

Wiki MSMarco MSMarcoˢ GloVe Deep10m

10⁶

10⁵

10⁴

10³

10²

10¹

10⁰

10⁶

10⁵

10⁴

10³

10²

10¹

10⁰
*

*

*

*

Recall@32 = 0.95

Recall@32 = 0.80

Q
ue

rie
s/

se
c

(L
og

 sc
al

e)

××× ×

××× ×

(b) GPU

8.4×
54× 10.9×

53.2×

4.9×

37.2× 1.1×
1.9×

1.1× 2.1×

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6
ANNA Near-Memory ANNA DReX

10⁶

10⁵

10⁴

10³

10²

10¹

10⁰

1×

10×
3.4×

18.9×

0.5×
5.6×

1× 1.1×
1.3×

2.1×

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1 16 1 16 1 16 1 16 1 16

Wiki MSMarco MSMarcoˢ GloVe Deep10m

10⁶

10⁵

10⁴

10³

10²

10¹

10⁰

10⁶

10⁵

10⁴

10³

10²

10¹

10⁰

Recall@32 = 0.95

Recall@32 = 0.80

Q
ue

rie
s/

se
c

(L
og

 sc
al

e)

(c) Prior ANNS accelerators

Fig. 11. Comparison of DReX and existing options for all datasets. The Y axis is in log scale. ENNS configurations in (b) that are marked by
asterisk use 3 GPUs. The value on top of each data point is the speedup of DReX compared to the best-performing competing design. The
CAGRA experiments marked by ’X’ in (b) cannot fit in a single GPU and this missing.

GloVe primarily to provide comparability with other works, and to
contextualize the results ofWiki, MSMarco, and MSMarcos, which
are relatively new and have not been widely used in the ANNS
literature.
Representative RAG pipeline. To contextualize the performance
of DReX, we implement a simple RAG pipeline based on Wiki,
paired with three popular generative models: Llama-3.2-3B, Llama-
3.1-8B, and Llama-3.1-70B. Performance-wise, retrieval time pri-
marily impacts latency, rather than other metrics like token rate. In
particular, for many user-facing AI applications, time-to-interactive
is critical. In this paper, we evaluate DReX primarily based on the
time-to-first-token (TTFT) metric [3, 16, 73]. A query, taken from
the test set for Wiki, is presented in a prompt, along with the top-k
documents selected during the retrieval phase, and we measure
the total delay of retrieval plus production of the first token. For
HNSW, we measure delay of retrieval for Wiki, using the HNSW
indexes described in Section 6, followed by the time to generate
the first token (prefill time). For DReX, we use a cycle-approximate
simulator to find its retrieval delay. The simulator also produces
the IDs of the documents retrieved by DReX, which we then use
to construct prompts for the LLM, mirroring the approach used
to evaluate HNSW. We measure the prefill time using the same
methodology as HNSW, and combine it with the simulated delay
to obtain the total latency.

To reach the specified DReX recall target, the sign concordance
filtering threshold (Section 4) is chosen per dataset during loading
via exploration. This process yields internal results similar to Fig. 4,
where each candidate threshold value offers a trade-off between re-
duced search latency and increased recall. Our experimental results
evaluate DReX and ANNS techniques at Recall@32={0.80,0.95}.

7 Experimental Results
7.1 Dense Retrieval Performance
We first compare the performance of DReX with existing solutions
for dense retrieval. We measure throughput (queries per second)

0%

20%

40%

60%

80%

100%

1 16 1 16 1 16 1 16 1 16

Wiki MSMarco MSMarcoˢ GloVe Deep10m

SCF SSC Final Aggregation (CPU)

Batch Size

Fig. 12. Breakdown of DReX latency on various corpora, with batch
size 1 and 16, and Recall@32=0.95. Relevant phases are bank-level
sign concordance filtering, similarity score computation, and final
Top-K Aggregation on the host.

and latency (retrieval time). We compare with the following config-
urations: IVF-SQ and HNSW on CPU, IVF-SQ and CAGRA on GPU,
and ANNA [41]. We also include a DReX configuration (denoted
by “DReX (ENNS)” in Fig. 11a) where we bypass sign concordance
filtering phase and perform ENNS near the memory. This configu-
ration is equivalent to IKS [61]. Fig. 11 compares the throughput of
DReX with Recall@32 of 0.95 and 0.80 with all these configurations
when operating on the five data sets with batch sizes of 1 and 16.

7.1.1 Comparison with CPU-based ANNS. As shown in Fig. 11a,
DReX significantly outperforms all CPU baselines. Compared to the
best performing ANNS baselines, for the high-dimensional Wiki
dataset and high recall, DReX provides 270× (compared to IVF-SQ)
and 1,167× (compared to HNSW) speedup for batch sizes of 1 and
16, respectively. A general trend is that, as the vector dimensions
decrease, DReX’s filtering ratio decreases, while the filtering ratio
of the baseline ANNS remains the same, causing the performance

1117

DReX: Accurate and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware Codesign ISCA ’25, June 21–25, 2025, Tokyo, Japan

difference between DReX and ANNS to shrink. Nevertheless, DReX
delivers at least 5 and 22 times higher performance compared to
the best-performing CPU ANNS for Glove and Deep10M across
different batch sizes and recall targets, respectively.

Reducing the recall target generally increases the filtering oppor-
tunity for DReX and other ANNS algorithms. At first glance, DReX
maintains a strong performance advantage even at lower recall
targets. However, for some datasets—specifically Wiki, MSMarco,
and MSMarcos—at batch size 1, the throughput of DReX remains
unchanged when lowering the recall target from 0.95 to 0.80. This is
because, in these datasets at batch size 1, the high filtering ratio of
sign concordance filtering ensures that similarity score evaluation
is not an end-to-end bottleneck even at 0.95 recall. Consequently,
further reducing the recall target, which increases the filtering ratio,
does not improve end-to-end search time, as predicted by Amdahl’s
Law. Fig. 12 illustrates the breakdown of DReX latency at 0.95 recall,
showing that, for Wiki, MSMarco, and MSMarcos at batch size 1,
the majority of search time is spent on filtering, which does not
decrease with a lower recall target.

Interestingly,DReXwithout filtering (ENNS), which exhaustively
searches the entire corpus using near-memory accelerators, is faster
than ANNS baselines on the CPU across many of the datasets,
especially at a high recall target. These results demonstrate that
the speedup achieved by high-quality ANNS can be matched by
a purpose-built accelerator designed for ENNS. DReX takes this
one step further and implements sign concordance filtering in the
memory to deliver very significant speedups.

DReX throughput benefits significantly from batching queries.
This improvement occurs for two reasons: First, for corpora that are
easy to filter, sign concordance filtering time dominates execution
but can be amortized across multiple queries in a batch. As shown
in Fig. 12, increasing the batch size shifts some of the execution
time from filtering (SCF) to similarity score computation. Second,
for corpora that are hard to filter, namely GloVe and Deep10m (see
Fig. 18), similarity score computation dominates. In such cases,
many corpus vectors meet the sign concordance threshold for mul-
tiple queries but are loaded only once, thereby amortizing a portion
of the similarity score delay across multiple queries in a batch.

7.1.2 Comparison with GPU-based NNS. As shown in Fig. 11b, even
when running ENNS or IVF-SQ/CAGRA (both ANNS) on an H100
GPU, DReX outperforms the best-performing of them by 2–101×,
except for batch size 16 in the Deep10m dataset at a 0.95 recall target.
The data points for Wiki and MSMarcos are missing for CAGRA
because their indexes cannot fit within the memory of a single
H100 GPU. Although CAGRA on GPU achieves a slight speedup
over DReX for Deep10m at 0.95 recall, DReX demonstrates strong
performance across the board and provides 6.4× more memory
capacity than an H100, enabling DReX to accelerate significantly
larger corpora.

7.1.3 Comparison with Other Accelerators. Fig. 11c comparesDReX
with the performance upper bound of ANNA (see Section 6 for how
we compute that upper bound). Across the board, DReX fares better.
This is consistent with the observation made by Lee et al. that
ANNA is bottlenecked by the memory bandwidth between the CPU
and DRAM [41]. To improve ANNA’s prospects, we compare DReX
against a near-memory ANNA configuration, where each ANNA

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1 4 16 64

Q
ue

rie
s/

se
c

(L
og

 sc
al

e)

Batch Size

HNSW

CAGRA

DReX

10⁶

10⁵

10⁴

10³

10²

6.7×

6.0×
3.1× 2.1×

Fig. 13. Comparison of DReX and CPU/GPU-based ANNS for MS-
Marco for application-level batch sizes up to 64, Recall@32=0.95.
The Y axis is in log scale. DReX has a maximum batch size of 16,
therefore performance does not improve above batch size 16.

unit is integrated into an NMA. This integration is feasible because
the area of each ANNA unit (17mm2 [41]) is approximately the
same as that of an NMA in DReX. We assume perfect parallelism
across near-memory ANNA units and a top-k aggregation overhead
similar to that of DReX.

As shown, the near-memoryANNAachieves a significant speedup
for all datasets and batch sizes against CPU-attached ANNA. More
generally, IVF-PQ performs well at lower recall targets, as it can
significantly reduce the search space. For datasets where DReX is
already bottlenecked by sign concordance filtering, such as MS-
Marcos at batch size 1, or for low-dimension datasets, such as GloVe,
the near-memory ANNA can match (GloVe) or even outperform
(MSMarcos) DReX by 2×. This is because ANNA uses IVF to clus-
ter the corpus vectors, which dramatically accelerates filtering for
small batch sizes, since only a subset of the clusters must be ac-
cessed for filtering. However, as batch size grows, the benefits of
this approach dwindle, makingDReX faster due to the speed of PIM-
based filtering. Nonetheless, the benefits of clustering are largely
orthogonal, and there could be an opportunity to extend DReX to
support IVF indexing. We leave this for future work. In any case,
for most configurations, DReX provides a solid speedup against a
futuristic futuristic near-memory ANNA implementation in many
cases, and in all cases against CPU-attached ANNA.

NDSearch [81] is another recent architecture for in-storage ac-
celeration of HNSW. We cannot construct a reliable performance
model due to significant differences in evaluation methodology.
However, NDSearch reports a throughput of roughly 11,000 queries
per second on GloVe, with a batch size of 2,048 and Recall@10=0.95.
By contrast, DReX achieves 73,650 queries per second on GloVe
with the maximum batch size of 16 and Recall@32=0.95. When
we set the DReX accuracy target to Recall@10=0.95 to match ND-
Search, DReX achieves 90,723 queries per second. DReX has higher
throughput for Recall@10=0.95 than for Recall@32=0.95 because
true Top-10 results typically have higher sign concordance filtering
scores, therefore the filtering threshold can be set higher. Further,
we note that GloVe is also the dataset for which HNSW on CPU

1118

ISCA ’25, June 21–25, 2025, Tokyo, Japan DerrickQuinn, E. Ezgi Yücel et al.

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1 16 1 16 1 16 1 16 1 16

Wiki MSMarco MSMarcoˢ GloVe Deep10m

Q
ue

rie
s/

se
c

(L
og

 sc
al

e)
N/A⇢CPUᴿᵉᶜᵃˡˡ⁼¹ CPU⇢CPU
N/A⇢NMAsᴿᵉᶜᵃˡˡ⁼¹ PFUs⇢CPU
PFUs⇢NMAs (DReX)

10⁵

10⁴

10³

10²

10¹

10⁰

10⁻¹
Batch size

Fig. 14. Throughput of ablation study configurations. AdB denotes
a pipeline with filtering performed on device A, followed by a simi-
larity score computation on device B.

most closely matches DReX performance. Thus, we believe that
DReX remains highly competitive for the other datasets.

7.1.4 Impact of Batch Size on DReX. Fig. 13 compares the scalabil-
ity of DReX performance with existing CPU/GPU-ANNS options
for more batch sizes. As shown in Fig. 13, further batching above 16
does not improve performance for DReX, due to the maximum PFU
batch size of 16. Therefore, in principle, CPU/GPU-based ANNS
can be more competitive at higher batch sizes. However, both CPU
and GPU-based ANNS experience diminishing returns due to mem-
ory bandwidth limitations, since existing ANNS algorithms cannot
achieve strong data re-use across queries. As the figure shows, even
at batch size 64,DReX remains superior to the ANNS configurations.

7.2 Ablation Study
We perform an ablation study to evaluate the contribution of each
component in DReX, which we logically divide into an optional
filtering phase and a necessary similarity score computation phase.
We analyze cases where sign concordance filtering is included or
excluded, cases where similarity search is performed on the NMAs,
and cases where sign concordance filtering is executed using the
PFUs. Fig. 14 compares the performance of the following config-
urations: N/AdCPU, which skips filtering and executes similarity
search on the CPU (same configuration as CPU ENNS); CPUdCPU,
which performs both filtering and similarity search on the CPU;
PFUsdCPU, which performs filtering on the PFU and similarity
search on the CPU; N/AdNMAs, which skips filtering and executes
ENNS on NMAs; and PFUsdNMAs, which represents DReX.

Comparing the performance of N/AdNMAs and N/AdCPU high-
lights the benefit of performing similarity score evaluations near
memory. Across the board, we observe a throughput improvement
of 12.4× to 38.6× by simply offloading similarity score evaluations
to NMAs. Alternatively, the CPUdCPU configuration, which per-
forms sign concordance filtering on the CPU, achieves a 1.1× to 21×
speedup compared to N/AdCPU. This speedup is solely attributed
to sign concordance filtering.

Another interesting comparison is between CPUdCPU and
PFUsdCPU, where we see a significant speedup when offloading
filtering to PFUs, except for the GloVe dataset. As shown in Fig. 12,
sign concordance filtering is not an end-to-end bottleneck in GloVe.

0.0

0.5

1.0

1.5

2.0

HNSW DReX HNSW DReX HNSW DReX

Llama-3.2-3B Llama-3.1-8B Llama-3.1-70B

Ti
m

e
(s

ec
on

ds
)

Generation (K=1) Generation (K=16) Retrieval

Batch size 1 16 1 16 1 16 1 16 1 161 16

DReX Retrieval:
0.15 ms

Fig. 15. Inference time breakdown of HNSW (CPU) vs. DReX re-
trieval for Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. Genera-
tive model runs on a single GPU (NVIDIA H100 SXM) for Llama-3.2-
3B and Llama-3.1-8B, and 8 GPUs for Llama-3.1-70B. Both retrieval
phases have Recall@32=0.95.

More importantly, since the total storage required for the sign bits
of all embedding vectors in GloVe is approximately 15MB, CPU
filtering can match the performance of PFUs without the over-
head of fine-grain offloading from the CPU. DReX, which offloads
both similarity score evaluation and filtering to NMAs and PFUs,
respectively, eliminates the CPU bottleneck in similarity score eval-
uations. Ultimately, DReX extracts the most potential from PIM by
implementing a seamless NMA-PIM fine-grain offload mechanism.

7.3 RAG Performance
Fig. 15 compares the time-to-first-token breakdown of three dif-
ferent RAG pipelines, all using the Wiki corpus for retrieval and
employing either Llama-3.2-3B, Llama-3.1-8B, or Llama-3.1-70B as
the LLM. We use 1 GPUs for Llama-3.2-3B and 3.1-8B and 8 GPUs
for Llama-3.1-70B because the time-to-first-token with a single
GPU is several seconds and unacceptable for user-facing RAG ap-
plications. As shown, DReX significantly reduces the end-to-end
time-to-first-token. For example, DReX outperforms the HNSW
CPU baseline in Llama-3.2-3B by 6.2× and 7× for 𝐾 = 1 and batch
sizes of 1 and 16, respectively.

Interestingly, DReX achieves even higher end-to-end speedup
for larger batch sizes in this application due to its greater efficiency
in batched retrieval compared to HNSW (Section 2.2). As illustrated,
increasing the batch size, the value of K, or the model size dispropor-
tionately increases the LLM generation time, thereby reducing the
relative end-to-end speedup from retrieval acceleration. However, it
is important to note that Fig. 15 uses the same fixedWiki dataset for
all the LLM configurations. In real-world scenarios, it is likely that
the corpus size scales proportionally with the LLM size. Therefore,
the end-to-end speedup of retrieval acceleration provided by DReX
would remain significant, even for RAG applications utilizing large
LLMs.

1119

DReX: Accurate and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware Codesign ISCA ’25, June 21–25, 2025, Tokyo, Japan

Fig. 16. End-to-end performance (lines) and energy efficiency (bars)
of implementations (Batch size 16, Recall@32=0.95) with per-bank
(32), per-bank group (8), and per-die PFU placements. The X axis
also shows the area overhead of each configuration vs. plain (16Gb
per die in all cases).

7.4 Power and Area Analysis
The area of each PFU is 0.1mm2; thus, 32 PFUs represent a 6.7%
overhead with respect to the 47.64mm2 area of a 16Gb LPDDR5X
die [76]. A single PFU consumes 14mW of power. For LPDDR5X,
each 16-bit channel provides up to 136Gbps [57]. DReX can fully
utilize this bandwidth across four dies (i.e., 34Gbps per die). The
energy per bit for LPDDR5X is 4 pJ [17]. Therefore, the power
consumption of a 16Gb LPDDR5X die with 32 PFUs is 34Gb/s
× 4 pJ/b plus 32 × 14mW = 584mW. If all banks synchronously
perform PIM filtering for a batch size of 16, the power consumption
of each PIM-enabled LPDDR5X package (32 dice) would be 18.7W.
For a batch size of 1, the power consumption during all-bank PIM
filtering is 5.24W.

Power-performance design trade-offs. We briefly compare our
per-bank PFU implementation (32 PFUs per die total) with hy-
pothetical alternative designs with per-bank group (per-BG) and
per-die PFUs—eight and one PFUs per die, respectively. While the
ACT/PRE power does not depend on the number of PFUs, the RD
power varies depending on the PFU placement. With respect to
a per-bank PFU placement, the per-BG and per-die placements
require each PFU access to travel an additional distance, which
we estimate to be the equivalent of going from a bank’s local row
buffer to the die’s global buffer. Per Lee et al. [40], that represents
about 35% of the power consumed by an end-to-end transmission in
HBMmemory, and we adopt the same breakdown here. Similarly to
LPDDR5 [1], a typical LPDDR5X die in x8 BL16 mode can transmit
128 bits to the global buffer, which is one-eighth the amount of
data that eight PFUs would receive simultaneously (8× 128b). Thus,
the power consumption attributable to transmitting to the eight
per-BG PFUs in parallel would be 8 × 0.35 × 4 pJ/b × 34Gbps. We
assume that the power consumption of this segment for the single
per-die PFU placement is 1/8 of that amount. Finally, recall that
PFUs transmit 128-bit bitmaps to the near-memory accelerator peri-
odically. To account for the peak power consumption of the off-die
transmission (about 47% of the round-trip power consumption by

91
%

80
% 63

% 40
% 25

%

10
0%

10
0%

10
0% 80

%

50
%

10
0%

10
0%

10
0%

10
0% 10

0%

1.E+04

1.E+05

1 2 4 8 16

5W 10W Base (18.6W)
10⁵

10⁴

MSMarco

91
% 80

% 63
% 40

%

25
%

10
0% 10

0% 10
0% 80

%

50
%

10
0% 10

0% 10
0% 10

0%

10
0%

1.E+04

1.E+05

1 2 4 8 16
Batch Size

10⁵

10⁴

GloVe

Q
ue

rie
s/

se
c

(L
og

 sc
al

e)

Fig. 17. Impact of power-limiting DReX PFUs to 5 and 10W via
frequency scaling. The data labels for each bar indicate the column
access rate used during SCF, in order to ahere to the selected TDP.
MSMarco andGloVe datasets are used, representingworkloadsmore-
and less-bounded by SCF, respectively. Recall@32 is 0.95 in all cases.

HBM memory per Lee et al. [40], which we adopt here), we assume
that the implementation with per-bank PFU placement can saturate
the bandwidth, while those with per-BG and per-die placements
use 1/4 and 1/32 of the bandwidth, respectively.

Fig. 16 shows the end-to-end performance and energy of those
implementations, normalized to the implementation with per-die
PFU placement. On the X axis, we also show the total area overhead
compared to the LPDDR5X without any PFUs. The plot shows that
the per-bank configuration yields a 15.3× speedup and 3.8× energy
efficiency compared to per-die implementation.

The area of the Near Memory Accelerator (NMA), as shown
in Fig. 5, excluding the Memory Controllers (MC), is 0.88mm2 per
LPDDR5 package in the 16 nm technology node. The physical in-
terfaces (PHYs) and memory controllers are estimated to occupy
14mm2 of each NMA, based on data from the Apple M2 chip, which
uses a 5 nm technology node [45]. Given that mixed-signal compo-
nents exhibit negligible area scaling [27, 74], the same value is used
for the 16 nm node. Consequently, the total area for each NMA is
14.88mm2. Since this area is less than the 20mm shoreline limit,
older technology nodes can be employed to meet this requirement.
Each NMA operates at 1 GHz to fully utilize the memory bandwidth.
The power consumption of an NMA for batch size 16 is 1.072W.
The total power consumption of all NMAs is 8.58W (8 NMAs per
DReX unit).

Fig. 17 shows the impact of reducing the rate of column accesses
during SCF to achieve reduced TDPs of 5 and 10W. When column
access rate is adjusted to hit a reduced power target, the benefits of

1120

ISCA ’25, June 21–25, 2025, Tokyo, Japan DerrickQuinn, E. Ezgi Yücel et al.

1.E+0

1.E+1

1.E+2

1.E+3

0.75 0.80 0.85 0.90 0.95 1.00

Fi
lte

r R
at

io
 (L

og
 sc

al
e)

Recall@32

SCF SCF (Zero: Negative) ITQ

10⁰

10¹

10²

10³

Fig. 18. Filter Ratio vs. Recall@32 of sign concurrence with various
thresholds for a pathologically constructed dataset. A dashed line
represents random filtering, as sign concordance filtering cannot
discern between non-negative values.

batching in the SCF phase are diminished since larger batch sizes
use more power and thus require slower accesses. For MSMarco,
which requires a relatively large amount of time for SCF (see Fig. 12),
a 5W and 10W power limit reduce performance by up to 33% and
14%, respectively. Conversely, GloVe is bounded more by the final
similarity score computation, and a 5W and 10W power limit
reduces performance by 6% and 2%, respectively.

8 Discussion and Related Work

Generality of sign concordance filtering. A key drawback of
naïve sign-based filtering is that it is dependent on the distribution
of embeddings. As a result, SCF is less efficient in cases where em-
beddings are asymmetric about zero or have a significant correlation
between dimensions. Nonetheless, we found that Iterative Quanti-
zation (ITQ) [25] is sufficient to dramatically improve performance.
ITQ computes a similarity-preserving rotation that optimizes a
dataset for binary quantization. We construct a pathological dataset
by applying a uniform bias to Deep10m then clipping negative di-
mensions at zero. By clipping, we produce an entirely non-negative
dataset. We bias before clipping to reduce the number of dimensions
that eventually are clipped to 0.

Fig. 18 shows that SCF can be highly sensitive to the choice of
sign for zero for non-negative vectors with some zero components.
SCF assumes a sign bit of 0 for dimensions with a value of zero.
In this configuration, SCF cannot discern between any vectors in
the dataset; however, if zero is taken as a negative, SCF improves
somewhat, as it can distinguish between positive and zero values.
However, this is far from a general approach, and sign concordance
still performs far worse than on other datasets. By contrast, after
applying ITQ, SCF regains much of the performance originally seen
on Deep10m, and the choice of sign for zero has no impact. For the
real datasets that we tested, the impact of ITQ was negligible, and
thus we did not apply ITQ.

Addition/deletion of vectors to/from DReX. In many cases,
updating an ANNS index requires either a partial or total recon-
struction of the underlying index structures; for graph-based ANNS,
graph edges must be reconstructed, while for cluster-like ANNS

(e.g., IVF and LSH), cluster membership must be adjusted. Signifi-
cantly, even in optimistic cases, repeatedmodifications to the corpus
eventually warrant a total reconstruction [79, 80, 84].

However, the placement or ordering of vectors in the corpus
does not impact recall in DReX, as sign concordance filtering re-
moves independent candidate corpus vectors from consideration.
Thus, not only are updates to the corpus contained by DReX fairly
simple to perform, but also there are no algorithmic concerns from
performing repeated updates. Updating a particular corpus vec-
tor is a simple overwrite of existing data, without impacting any
neighbors. Because the update is simple, deletions and insertions
are also similarly simple. To add a new vector to the database, the
new vector is appended to the existing storage. To delete a vector,
the vector selected for deletion is overwritten by the last vector in
the database. Because the updates are not very frequent, they can
be performed in batches and optimally performed.

Alternative NNS accelerators. Due to the importance of dense
retrieval in recommendation systems and generative AI, there is
prior work in the computer architecture community on accelerating
approximate and exact NNS primitives [28, 37, 41, 44, 61, 81, 86].
Nonetheless, these works primarily adopt existing ANNS or ENNS
algorithms and design accelerators around them, without fully
leveraging the opportunities for algorithm–hardware co-design to
exploit the unique capabilities of near- and in-DRAM acceleration.

9 Conclusions
DReX is a novel PIM-based mechanism to accelerate RAG pipelines
that exploits inherent mathematical properties about how similar-
ity between vectors is computed during nearest-neighbor search,
employing a sign concordance filtering method that allows pruning
corpus vectors that are unlikely to be close to a given query vector.
A novel layout in DRAM ensures that vector sign bits are readily
available to the in-DRAM hardware. Our in-DRAM filtering hard-
ware makes it possible for disregarded vectors to never even leave
the DRAM bank, and our near-DRAM retrieval hardware does the
rest. Our results show that DReX outperforms HNSW on CPU by
24 and 19× at Recall@32=0.95 for a high-dimensional corpus with
batch sizes of 1 and 16, respectively. This dense retrieval speedup
translates into a 6.2-7× reduction in time-to-first-token for a repre-
sentative RAG application. Additionally, DReX incurs reasonable
power and area overheads in the memory subsystem.

Acknowledgments
This work was supported in part by NSF awards CCF-2239020,
CCF-2217071, CCF-2312739, CCF-2312740, CCF-2312741, and CCF-
2407690, as well as ACE and PRISM, two of the seven centers in
JUMP 2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA. Any opinions, findings, conclusions, and
recommendations expressed in this material are those of the authors
and do not necessarily reflect those of the sponsors.

References
[1] [n. d.]. LPDDR5 Tutorial: Deep dive into its physical structure. https://www.

systemverilog.io/design/lpddr5-tutorial-physical-structure/. Accessed Feb. 21,
2025.

[2] 2024. CXL Is Dead In The AI Era. Semianalysis (2024). https://www.semianalysis.
com/p/cxl-is-dead-in-the-ai-era

1121

https://www.systemverilog.io/design/lpddr5-tutorial-physical-structure/
https://www.systemverilog.io/design/lpddr5-tutorial-physical-structure/
https://www.semianalysis.com/p/cxl-is-dead-in-the-ai-era
https://www.semianalysis.com/p/cxl-is-dead-in-the-ai-era

DReX: Accurate and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware Codesign ISCA ’25, June 21–25, 2025, Tokyo, Japan

[3] Megha Agarwal, Asfandyar Qureshi, Nikhil Sardana, Linden Li, Julian
Quevedo, and Daya Khudia. 2023. LLM Inference Performance Engineering:
Best Practices. https://www.databricks.com/blog/llm-inference-performance-
engineering-best-practices. Online; accessed 2025-02-22.

[4] Yeonchan Ahn, Sang-Goo Lee, Junho Shim, and Jaehui Park. 2022. Retrieval-
Augmented Response Generation for Knowledge-Grounded Conversation in the
Wild. IEEE Access 10 (2022), 131374–131385. https://doi.org/10.1109/ACCESS.
2022.3228964

[5] Nomic AI. [n. d.]. nomic-embed-text-v1.5. https://huggingface.co/nomic-ai/
nomic-embed-text-v1.5. Accessed: 2025-02-12.

[6] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. 2015. Practical and optimal LSH for angular distance. In Proceedings of
the 28th International Conference on Neural Information Processing Systems - Vol-
ume 1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 1225–1233.

[7] Kazuo Aoyama, Kazumi Saito, Hiroshi Sawada, and Naonori Ueda. 2011. Fast
approximate similarity search based on degree-reduced neighborhood graphs.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (San Diego, California, USA) (KDD ’11). Association
for Computing Machinery, New York, NY, USA, 1055–1063. https://doi.org/10.
1145/2020408.2020576

[8] Sunil Arya and David M. Mount. 1993. Approximate nearest neighbor queries in
fixed dimensions. In Proceedings of the Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms (Austin, Texas, USA) (SODA ’93). Society for Industrial and
Applied Mathematics, USA, 271–280.

[9] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2017. ANN-
benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
In International conference on similarity search and applications. Springer, 34–49.

[10] Artem Babenko and Victor Lempitsky. 2012. The inverted multi-index. In 2012
IEEE Conference on Computer Vision and Pattern Recognition. 3069–3076. https:
//doi.org/10.1109/CVPR.2012.6248038

[11] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong
Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2018.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset.
arXiv:1611.09268 [cs.CL] https://arxiv.org/abs/1611.09268

[12] Giovanni Bonetta, Rossella Cancelliere, Ding Liu, and Paul Vozila. 2021. Retrieval-
Augmented Transformer-XL for Close-Domain Dialog Generation. The Interna-
tional FLAIRS Conference Proceedings 34 (Apr. 2021). https://doi.org/10.32473/
flairs.v34i1.128369

[13] Deng Cai, YanWang, Wei Bi, Zhaopeng Tu, Xiaojiang Liu, Wai Lam, and Shuming
Shi. 2019. Skeleton-to-Response: Dialogue Generation Guided by Retrieval Mem-
ory. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.).
Association for Computational Linguistics, Minneapolis, Minnesota, 1219–1228.
https://doi.org/10.18653/v1/N19-1124

[14] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-
scale Approximate Nearest Neighbor Search. CoRR abs/2111.08566 (2021).
arXiv:2111.08566 https://arxiv.org/abs/2111.08566

[15] Wenhu Chen, Hexiang Hu, Xi Chen, Pat Verga, andWilliam Cohen. 2022. MuRAG:
Multimodal Retrieval-Augmented Generator for Open Question Answering over
Images and Text. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang (Eds.). Association for Computational Linguistics, Abu Dhabi, United
Arab Emirates, 5558–5570. https://doi.org/10.18653/v1/2022.emnlp-main.375

[16] Google Cloud. 2023. Best practices with large language models (LLMs). https://
cloud.google.com/vertex-ai/generative-ai/docs/learn/prompt-best-practices. On-
line; accessed 2025-02-22.

[17] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-specific hardware
accelerators. Commun. ACM 63, 7 (2020), 48–57. https://doi.org/10.1145/3361682

[18] Dimitrios Danopoulos, Christoforos Kachris, and Dimitrios Soudris. 2019. FPGA
Acceleration of Approximate KNN Indexing on High-Dimensional Vectors.
In Proceedings of the 2019 14th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC ’19). IEEE, 59–65. https:
//doi.org/10.1109/ReCoSoC48741.2019.9034938

[19] Sanjoy Dasgupta and Kaushik Sinha. 2013. Randomized partition trees for exact
nearest neighbor search. CoRR abs/1302.1948 (2013). arXiv:1302.1948 http:
//arxiv.org/abs/1302.1948

[20] Fabrice Devaux. 2019. UPMEM Processing in Memory: DRAM is Becoming a True
Processing Unit. In Proceedings of the 31st Hot Chips Symposium (HC31). Stanford,
CA, USA. https://old.hotchips.org/hc31/HC31_1.4_UPMEM.FabriceDevaux.v2_1.
pdf Accessed: November 23, 2024.

[21] Angela Fan Fabio Petroni, Aleksandra Piktus. [n. d.]. Introducing KILT, a new uni-
fied benchmark for knowledge-intensive NLP tasks — ai.meta.com. Meta AI Blog
([n. d.]). https://ai.meta.com/blog/introducing-kilt-a-new-unified-benchmark-
for-knowledge-intensive-nlp-tasks/ [Accessed 22-11-2023].

[22] Amin Firoozshahian, Joel Coburn, Roman Levenstein, Rakesh Nattoji, Ashwin Ka-
math, Olivia Wu, Gurdeepak Grewal, Harish Aepala, Bhasker Jakka, Bob Dreyer,
Adam Hutchin, Utku Diril, Krishnakumar Nair, Ehsan K. Aredestani, Martin
Schatz, Yuchen Hao, Rakesh Komuravelli, Kunming Ho, Sameer Abu Asal, Joe
Shajrawi, Kevin Quinn, Nagesh Sreedhara, Pankaj Kansal, Willie Wei, Dheepak
Jayaraman, Linda Cheng, Pritam Chopda, Eric Wang, Ajay Bikumandla, Arun
Karthik Sengottuvel, Krishna Thottempudi, Ashwin Narasimha, Brian Dodds,
Cao Gao, Jiyuan Zhang, Mohammed Al-Sanabani, Ana Zehtabioskuie, Jordan
Fix, Hangchen Yu, Richard Li, Kaustubh Gondkar, Jack Montgomery, Mike Tsai,
Saritha Dwarakapuram, Sanjay Desai, Nili Avidan, Poorvaja Ramani, Karthik
Narayanan, Ajit Mathews, Sethu Gopal, MaximNaumov, Vijay Rao, Krishna Noru,
Harikrishna Reddy, Prahlad Venkatapuram, and Alexis Bjorlin. 2023. MTIA: First
Generation Silicon Targeting Meta’s Recommendation Systems. In Proceedings
of the 50th Annual International Symposium on Computer Architecture (Orlando,
FL, USA) (ISCA ’23). Association for Computing Machinery, New York, NY, USA,
Article 80, 13 pages. https://doi.org/10.1145/3579371.3589348

[23] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate
nearest neighbor search with the navigating spreading-out graph. Proc. VLDB
Endow. 12, 5 (Jan. 2019), 461–474. https://doi.org/10.14778/3303753.3303754

[24] Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessandro Presta, Jason Baldridge,
Eugene Ie, and Diego Garcia-Olano. 2019. Learning Dense Representations
for Entity Retrieval. arXiv (2019). https://doi.org/10.48550/arXiv.1909.10506
arXiv:1909.10506

[25] Yunchao Gong and Svetlana Lazebnik. 2011. Iterative quantization: A procrustean
approach to learning binary codes. In CVPR 2011. 817–824. https://doi.org/10.
1109/CVPR.2011.5995432

[26] Liangke Gui, Borui Wang, Qiuyuan Huang, Alexander Hauptmann, Yonatan Bisk,
and Jianfeng Gao. 2022. KAT: A Knowledge Augmented Transformer for Vision-
and-Language. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(Eds.). Association for Computational Linguistics, Seattle, United States, 956–968.
https://doi.org/10.18653/v1/2022.naacl-main.70

[27] MarkHorowitz. 2014. 1.1 Computing’s energy problem (andwhat we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). 10–14. https://doi.org/10.1109/ISSCC.2014.6757323

[28] Han-Wen Hu, Wei-Chen Wang, Yuan-Hao Chang, Yung-Chun Lee, Bo-Rong Lin,
Huai-Mu Wang, Yen-Po Lin, Yu-Ming Huang, Chong-Ying Lee, Tzu-Hsiang Su,
Chih-Chang Hsieh, Chia-Ming Hu, Yi-Ting Lai, Chung-Kuang Chen, Han-Sung
Chen, Hsiang-Pang Li, Tei-Wei Kuo, Meng-Fan Chang, Keh-Chung Wang, Chun-
Hsiung Hung, and Chih-Yuan Lu. 2022. ICE: An Intelligent Cognition Engine
with 3D NAND-based In-Memory Computing for Vector Similarity Search Ac-
celeration. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO ’22). 763–783. https://doi.org/10.1109/MICRO56248.2022.00058

[29] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing (Dallas, Texas, USA) (STOC ’98). Association
for Computing Machinery, New York, NY, USA, 604–613. https://doi.org/10.
1145/276698.276876

[30] Gautier Izacard and Edouard Grave. 2021. Leveraging Passage Retrieval with
Generative Models for Open Domain Question Answering. In Proceedings of the
16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (Eds.).
Association for Computational Linguistics, Online, 874–880. https://doi.org/10.
18653/v1/2021.eacl-main.74

[31] Hervé Jegou, Matthijs Douze, and Jeff Johnson. [n. d.]. Faiss: A library
for efficient similarity search — engineering.fb.com. Meta Engineering Blog
([n. d.]). https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-
library-for-efficient-similarity-search/ [Accessed 12-11-2023].

[32] Wenqi Jiang, Shuai Zhang, Boran Han, Jie Wang, Bernie Wang, and Tim Kraska.
2024. PipeRAG: Fast Retrieval-Augmented Generation via Algorithm-System
Co-design. (2024). arXiv:2403.05676 [cs.CL] https://arxiv.org/abs/2403.05676

[33] Jeff Johnson and Matthijs Douze. 2023. Faiss on the GPU. https://github.com/
facebookresearch/faiss/wiki/Faiss-on-the-GPU

[34] Herve Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117–128. https://doi.org/10.1109/TPAMI.2010.57

[35] Yannis Kalantidis and Yannis Avrithis. 2014. Locally Optimized Product Quan-
tization for Approximate Nearest Neighbor Search. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition. 2329–2336. https://doi.org/10.1109/
CVPR.2014.298

[36] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP ’20). Association for Computa-
tional Linguistics, Online, 6769–6781. https://doi.org/10.18653/v1/2020.emnlp-
main.550

1122

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://doi.org/10.1109/ACCESS.2022.3228964
https://doi.org/10.1109/ACCESS.2022.3228964
https://huggingface.co/nomic-ai/nomic-embed-text-v1.5
https://huggingface.co/nomic-ai/nomic-embed-text-v1.5
https://doi.org/10.1145/2020408.2020576
https://doi.org/10.1145/2020408.2020576
https://doi.org/10.1109/CVPR.2012.6248038
https://doi.org/10.1109/CVPR.2012.6248038
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://doi.org/10.32473/flairs.v34i1.128369
https://doi.org/10.32473/flairs.v34i1.128369
https://doi.org/10.18653/v1/N19-1124
https://arxiv.org/abs/2111.08566
https://arxiv.org/abs/2111.08566
https://doi.org/10.18653/v1/2022.emnlp-main.375
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompt-best-practices
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompt-best-practices
https://doi.org/10.1145/3361682
https://doi.org/10.1109/ReCoSoC48741.2019.9034938
https://doi.org/10.1109/ReCoSoC48741.2019.9034938
https://arxiv.org/abs/1302.1948
http://arxiv.org/abs/1302.1948
http://arxiv.org/abs/1302.1948
https://old.hotchips.org/hc31/HC31_1.4_UPMEM.FabriceDevaux.v2_1.pdf
https://old.hotchips.org/hc31/HC31_1.4_UPMEM.FabriceDevaux.v2_1.pdf
https://ai.meta.com/blog/introducing-kilt-a-new-unified-benchmark-for-knowledge-intensive-nlp-tasks/
https://ai.meta.com/blog/introducing-kilt-a-new-unified-benchmark-for-knowledge-intensive-nlp-tasks/
https://doi.org/10.1145/3579371.3589348
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.48550/arXiv.1909.10506
https://arxiv.org/abs/1909.10506
https://doi.org/10.1109/CVPR.2011.5995432
https://doi.org/10.1109/CVPR.2011.5995432
https://doi.org/10.18653/v1/2022.naacl-main.70
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/MICRO56248.2022.00058
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://arxiv.org/abs/2403.05676
https://arxiv.org/abs/2403.05676
https://github.com/facebookresearch/faiss/wiki/Faiss-on-the-GPU
https://github.com/facebookresearch/faiss/wiki/Faiss-on-the-GPU
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/CVPR.2014.298
https://doi.org/10.1109/CVPR.2014.298
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

ISCA ’25, June 21–25, 2025, Tokyo, Japan DerrickQuinn, E. Ezgi Yücel et al.

[37] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang, Sukhan Lee,
Songyi Han, YeonGon Cho, Jin Hyun Kim, Yongsuk Kwon, KyungSoo Kim, Jin
Jung, Ilkwon Yun, Sung Joo Park, Hyunsun Park, Joonho Song, Jeonghyeon
Cho, Kyomin Sohn, Nam Sung Kim, and Hsien-Hsin S. Lee. 2022. Near-Memory
Processing in Action: Accelerating Personalized RecommendationWith AxDIMM.
IEEE Micro 42, 1 (Jan. 2022), 116–127. https://doi.org/10.1109/MM.2021.3097700
Conference Name: IEEE Micro.

[38] Ji-Hoon Kim, Yeo-Reum Park, Jaeyoung Do, Soo-Young Ji, and Joo-Young Kim.
2023. Accelerating Large-Scale Graph-Based Nearest Neighbor Search on a
Computational Storage Platform. IEEE Trans. Comput. 72, 1 (2023), 278–290.
https://doi.org/10.1109/TC.2022.3155956

[39] Mario Köppen. 2000. The Curse of Dimensionality. In Proceedings of the 5th
Online World Conference on Soft Computing in Industrial Applications (WSC5 ’00,
Vol. 1). Online World Conference on Soft Computing, 4–8.

[40] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun
Kim, O Seongil, Anand Iyer, DavidWang, Kyomin Sohn, and Nam Sung Kim. 2021.
Hardware Architecture and Software Stack for PIM Based on Commercial DRAM
Technology : Industrial Product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 43–56. https://doi.org/10.1109/
ISCA52012.2021.00013

[41] Yejin Lee, Hyunji Choi, Sunhong Min, Hyunseung Lee, Sangwon Beak, Dawoon
Jeong, Jae W. Lee, and Tae Jun Ham. 2022. ANNA: Specialized Architecture for
Approximate Nearest Neighbor Search. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 169–183. https://doi.org/10.
1109/HPCA53966.2022.00021

[42] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS ’20).
Curran Associates Inc., Red Hook, NY, USA, Article 793, 16 pages.

[43] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator. IEEE Com-
puter Architecture Letters 19, 2 (2020), 106–109. https://doi.org/10.1109/LCA.2020.
2973991

[44] Zihan Liu, Wentao Ni, Jingwen Leng, Yu Feng, Cong Guo, Quan Chen, Chao
Li, Minyi Guo, and Yuhao Zhu. 2024. JUNO: Optimizing High-Dimensional
Approximate Nearest Neighbour Search with Sparsity-Aware Algorithm and Ray-
Tracing Core Mapping. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2 (La Jolla, CA, USA) (ASPLOS ’24). Association for Computing Machinery, New
York, NY, USA, 549–565. https://doi.org/10.1145/3620665.3640360

[45] Locuza. 2022. Die Analysis: Samsung Exynos 2200 with RDNA2 Graphics. https:
//locuza.substack.com/p/die-analysis-samsung-exynos-2200. Accessed: 2024-11-
22.

[46] Gabriel H. Loh, Natalie Enright Jerger, Ajaykumar Kannan, and Yasuko Eckert.
2015. Interconnect-Memory Challenges for Multi-chip, Silicon Interposer Sys-
tems. In Proceedings of the 2015 International Symposium on Memory Systems
(Washington DC, DC, USA) (MEMSYS ’15). Association for Computing Machinery,
New York, NY, USA, 3–10. https://doi.org/10.1145/2818950.2818951

[47] Haocong Luo, Yahya Can Tuğrul, F. Nisa Bostancı, Ataberk Olgun, A. Giray
Yağlıkçı, and Onur Mutlu. 2024. Ramulator 2.0: A Modern, Modular, and Ex-
tensible DRAM Simulator. IEEE Comput. Archit. Lett. 23, 1 (Jan. 2024), 112–116.
https://doi.org/10.1109/LCA.2023.3333759

[48] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (Sept. 2014), 61–68. https://doi.org/10.1016/j.is.
2013.10.006

[49] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 4 (2020), 824–
836. https://doi.org/10.1109/TPAMI.2018.2889473

[50] Luke Merrick. 2024. Embedding And Clustering Your Data Can Improve Con-
trastive Pretraining. arxiv (2024). arXiv:2407.18887 [cs.LG] https://arxiv.org/abs/
2407.18887

[51] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. 2022. MTEB:
Massive text embedding benchmark. arXiv preprint arXiv:2210.07316 (2022).

[52] Hiroyuki Ootomo, Akira Naruse, Corey Nolet, Ray Wang, Tamas Feher, and Yong
Wang. 2024. CAGRA: Highly Parallel Graph Construction and Approximate
Nearest Neighbor Search for GPUs. arXiv:2308.15136 [cs.DS] https://arxiv.org/
abs/2308.15136

[53] OpenAI. 2023. ChatGPT plugins. OpenAI Blog (2023). https://openai.com/blog/
chatgpt-plugins

[54] Marcelo Orenes-Vera, Esin Tureci, Margaret Martonosi, and David Wentzlaff.
2024. MuchiSim: A Simulation Framework for Design Exploration of Multi-Chip
Manycore Systems. In Proceedings of the 2024 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS ’24). IEEE, 48–60. https:

//doi.org/10.1109/ISPASS61541.2024.00015
[55] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database

management systems. The VLDB Journal 33, 5 (jul 2024), 1591–1615. https:
//doi.org/10.1007/s00778-024-00864-x

[56] Jaehyun Park, Jaewan Choi, Kwanhee Kyung, Michael Jaemin Kim, Yongsuk
Kwon, Nam Sung Kim, and Jung Ho Ahn. 2024. AttAcc! Unleashing the Power of
PIM for Batched Transformer-based GenerativeModel Inference. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 103–119. https:
//doi.org/10.1145/3620665.3640422

[57] Sang-Soo Park, KyungSoo Kim, Jinin So, Jin Jung, Jonggeon Lee, KyoungwanWoo,
Nayeon Kim, Younghyun Lee, Hyungyo Kim, Yongsuk Kwon, Jinhyun Kim, Jieun
Lee, YeonGon Cho, Yongmin Tai, Jeonghyeon Cho, Hoyoung Song, Jung Ho Ahn,
and Nam Sung Kim. 2024. An LPDDR-based CXL-PNMPlatform for TCO-efficient
Inference of Transformer-based Large Language Models. In Proceedings of the
2024 IEEE International Symposium on High-Performance Computer Architecture
(HPCA ’24). IEEE, 970–982. https://doi.org/10.1109/HPCA57654.2024.00078

[58] Dylan Patel. 2022. Apple M2 Die Shot and Architecture Analysis – Big Cost
Increase And A15 Based IP. SemiAnalysis (June 2022). https://www.semianalysis.
com/p/apple-m2-die-shot-and-architecture

[59] Hongwu Peng, Shiyang Chen, Zhepeng Wang, Junhuan Yang, Scott A. Weitze,
Tong Geng, Ang Li, Jinbo Bi, Minghu Song, Weiwen Jiang, Hang Liu, and Cai-
wen Ding. 2021. Optimizing FPGA-based Accelerator Design for Large-Scale
Molecular Similarity Search (Special Session Paper). In Proceedings of the 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD ’21). IEEE,
1–7. https://doi.org/10.1109/ICCAD51958.2021.9643528

[60] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP ’14). Association for
Computational Linguistics, 1532–1543. http://www.aclweb.org/anthology/D14-
1162

[61] Derrick Quinn, MohammadNouri, Neel Patel, John Salihu, Alireza Salemi, Sukhan
Lee, Hamed Zamani, and Mohammad Alian. 2025. Accelerating Retrieval-
Augmented Generation. In Proceedings of the 30th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
Volume 1 (Rotterdam, Netherlands) (ASPLOS ’25). Association for Computing
Machinery, New York, NY, USA, 15–32. https://doi.org/10.1145/3669940.3707264

[62] TREC RAG. 2024. TREC RAG 2024 Corpus Finalization. https://trec-rag.github.
io/annoucements/2024-corpus-finalization/. Accessed: 2024-11-23.

[63] Juan Ramos et al. 2003. Using TF-IDF to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Citeseer, 29–48.

[64] RAPIDS AI. 2025. cuVS: GPU-Accelerated Vector Search and Clustering. https:
//github.com/rapidsai/cuvs. Accessed: 2025-05-09.

[65] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,
and Mike Gatford. 1994. Okapi at TREC-3. In Text Retrieval Conference. https:
//api.semanticscholar.org/CorpusID:3946054

[66] Alireza Salemi, Juan Altmayer Pizzorno, and Hamed Zamani. 2023. A Symmet-
ric Dual Encoding Dense Retrieval Framework for Knowledge-Intensive Visual
Question Answering. In Proceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (Taipei, Taiwan)
(SIGIR ’23). Association for Computing Machinery, New York, NY, USA, 110–120.
https://doi.org/10.1145/3539618.3591629

[67] Alireza Salemi, Mahta Rafiee, and Hamed Zamani. 2023. Pre-Training Multi-
Modal Dense Retrievers for Outside-Knowledge Visual Question Answering. In
Proceedings of the 2023 ACM SIGIR International Conference on Theory of Informa-
tion Retrieval (Taipei, Taiwan) (ICTIR ’23). Association for Computing Machinery,
New York, NY, USA, 169–176. https://doi.org/10.1145/3578337.3605137

[68] Gerard Salton and Christopher Buckley. 1988. Term-Weighting Approaches
in Automatic Text Retrieval. Inf. Process. Manage. 24, 5 (Aug. 1988), 513–523.
https://doi.org/10.1016/0306-4573(88)90021-0

[69] Michael A Schuh, Tim Wylie, and Rafal A Angryk. 2014. Mitigating the curse
of dimensionality for exact kNN retrieval. In The Twenty-Seventh International
Flairs Conference.

[70] Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation 28, 1 (1972), 11–21.

[71] Heidi Steen and Dan Wahlin. 2023. Retrieval Augumented Generation Overview.
Microsoft Learn (2023). https://learn.microsoft.com/en-us/azure/search/retrieval-
augmented-generation-overview

[72] Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate
prediction of CMOS device performance from 180nm to 7nm. Integration 58
(2017), 74–81. https://doi.org/10.1016/j.vlsi.2017.02.002

[73] Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo Goiri, and Josep Torrellas.
2024. Towards Greener LLMs: Bringing Energy-Efficiency to the Forefront of
LLM Inference. arXiv preprint arXiv:2403.20306 (2024). arXiv:2403.20306 [cs.AI]
https://doi.org/10.48550/arXiv.2403.20306

1123

https://doi.org/10.1109/MM.2021.3097700
https://doi.org/10.1109/TC.2022.3155956
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/HPCA53966.2022.00021
https://doi.org/10.1109/HPCA53966.2022.00021
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1145/3620665.3640360
https://locuza.substack.com/p/die-analysis-samsung-exynos-2200
https://locuza.substack.com/p/die-analysis-samsung-exynos-2200
https://doi.org/10.1145/2818950.2818951
https://doi.org/10.1109/LCA.2023.3333759
https://doi.org/10.1016/j.is.2013.10.006
https://doi.org/10.1016/j.is.2013.10.006
https://doi.org/10.1109/TPAMI.2018.2889473
https://arxiv.org/abs/2407.18887
https://arxiv.org/abs/2407.18887
https://arxiv.org/abs/2407.18887
https://arxiv.org/abs/2308.15136
https://arxiv.org/abs/2308.15136
https://arxiv.org/abs/2308.15136
https://openai.com/blog/chatgpt-plugins
https://openai.com/blog/chatgpt-plugins
https://doi.org/10.1109/ISPASS61541.2024.00015
https://doi.org/10.1109/ISPASS61541.2024.00015
https://doi.org/10.1007/s00778-024-00864-x
https://doi.org/10.1007/s00778-024-00864-x
https://doi.org/10.1145/3620665.3640422
https://doi.org/10.1145/3620665.3640422
https://doi.org/10.1109/HPCA57654.2024.00078
https://www.semianalysis.com/p/apple-m2-die-shot-and-architecture
https://www.semianalysis.com/p/apple-m2-die-shot-and-architecture
https://doi.org/10.1109/ICCAD51958.2021.9643528
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3669940.3707264
https://trec-rag.github.io/annoucements/2024-corpus-finalization/
https://trec-rag.github.io/annoucements/2024-corpus-finalization/
https://github.com/rapidsai/cuvs
https://github.com/rapidsai/cuvs
https://api.semanticscholar.org/CorpusID:3946054
https://api.semanticscholar.org/CorpusID:3946054
https://doi.org/10.1145/3539618.3591629
https://doi.org/10.1145/3578337.3605137
https://doi.org/10.1016/0306-4573(88)90021-0
https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-generation-overview
https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-generation-overview
https://doi.org/10.1016/j.vlsi.2017.02.002
https://arxiv.org/abs/2403.20306
https://doi.org/10.48550/arXiv.2403.20306

DReX: Accurate and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware Codesign ISCA ’25, June 21–25, 2025, Tokyo, Japan

[74] Lisa T. Su, Samuel Naffziger, andMark Papermaster. 2017. Multi-chip technologies
to unleash computing performance gains over the next decade. In 2017 IEEE
International Electron Devices Meeting (IEDM). 1.1.1–1.1.8. https://doi.org/10.
1109/IEDM.2017.8268306

[75] Gemini Team. 2024. Gemini: A Family of Highly Capable Multimodal Models.
arXiv (2024). arXiv:2312.11805 [cs.CL] https://doi.org/10.48550/arXiv.2312.11805

[76] TechInsights. 2025. Samsung 1a 16Gb LPDDR5X DRAM Transistor. https://www.
techinsights.com/blog/samsung-1a-16gb-lpddr5x-dram-transistor. Accessed:
2025-02-20.

[77] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. Beir: A heterogenous benchmark for zero-shot evaluation of
information retrieval models. arXiv preprint arXiv:2104.08663 (2021).

[78] Jingdong Wang and Shipeng Li. 2012. Query-driven iterated neighborhood graph
search for large scale indexing. In Proceedings of the 20th ACM International
Conference on Multimedia (Nara, Japan) (MM ’12). Association for Computing Ma-
chinery, New York, NY, USA, 179–188. https://doi.org/10.1145/2393347.2393378

[79] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing
Yuan, Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang,
Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A
Purpose-Built Vector Data Management System. In Proceedings of the 2021 In-
ternational Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 2614–2627.
https://doi.org/10.1145/3448016.3457550

[80] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A com-
prehensive survey and experimental comparison of graph-based approximate
nearest neighbor search. Proc. VLDB Endow. 14, 11 (July 2021), 1964–1978.
https://doi.org/10.14778/3476249.3476255

[81] Yitu Wang, Shiyu Li, Qilin Zheng, Linghao Song, Zongwang Li, Andrew Chang,
Hai "Helen" Li, and Yiran Chen. 2024. NDSEARCH: Accelerating Graph-Traversal-
Based Approximate Nearest Neighbor Search through Near Data Processing. In

Proceedings of the 39th Annual International Symposium on Computer Architecture.
arXiv:2312.03141 https://doi.org/10.48550/arXiv.2312.03141

[82] Yi Wang, Huan Liu, Jianan Yuan, Jiaxian Chen, Tianyu Wang, Chenlin Ma, and
Rui Mao. 2024. Leanor: A Learning-Based Accelerator for Efficient Approximate
Nearest Neighbor Search via Reduced Memory Access. In Proceedings of the 61st
ACM/IEEE Design Automation Conference (San Francisco, CA, USA) (DAC ’24).
Association for Computing Machinery, New York, NY, USA, Article 61, 6 pages.
https://doi.org/10.1145/3649329.3657357

[83] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. arXiv (2020). https:
//doi.org/10.48550/arXiv.2007.00808 arXiv:2007.00808

[84] Zhaozhuo Xu, Weijie Zhao, Shulong Tan, Zhixin Zhou, and Ping Li. 2022. Prox-
imity graph maintenance for fast online nearest neighbor search. arXiv preprint
arXiv:2206.10839 (2022).

[85] Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. 2024. Corrective Retrieval
Augmented Generation. arXiv (2024). https://doi.org/10.48550/arXiv.2401.15884
arXiv:2401.15884 [cs.CL]

[86] Wei Yuan and Xi Jin. 2025. FANNS: An FPGA-Based Approximate Nearest-
Neighbor Search Accelerator. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 33, 4 (2025), 1197–1201. https://doi.org/10.1109/TVLSI.2024.
3496589

[87] Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. Towards
Efficient Index Construction and Approximate Nearest Neighbor Search in High-
Dimensional Spaces. Proc. VLDB Endow. 16, 8 (April 2023), 1979–1991. https:
//doi.org/10.14778/3594512.3594527

[88] Yun Zhu, Jia-Chen Gu, Caitlin Sikora, Ho Ko, Yinxiao Liu, Chu-Cheng Lin, Lei
Shu, Liangchen Luo, Lei Meng, Bang Liu, and Jindong Chen. 2024. Accelerating
Inference of Retrieval-Augmented Generation via Sparse Context Selection. arXiv
(2024). https://doi.org/10.48550/arXiv.2405.16178

1124

https://doi.org/10.1109/IEDM.2017.8268306
https://doi.org/10.1109/IEDM.2017.8268306
https://arxiv.org/abs/2312.11805
https://doi.org/10.48550/arXiv.2312.11805
https://www.techinsights.com/blog/samsung-1a-16gb-lpddr5x-dram-transistor
https://www.techinsights.com/blog/samsung-1a-16gb-lpddr5x-dram-transistor
https://doi.org/10.1145/2393347.2393378
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.14778/3476249.3476255
https://arxiv.org/abs/2312.03141
https://doi.org/10.48550/arXiv.2312.03141
https://doi.org/10.1145/3649329.3657357
https://doi.org/10.48550/arXiv.2007.00808
https://doi.org/10.48550/arXiv.2007.00808
https://arxiv.org/abs/2007.00808
https://doi.org/10.48550/arXiv.2401.15884
https://arxiv.org/abs/2401.15884
https://doi.org/10.1109/TVLSI.2024.3496589
https://doi.org/10.1109/TVLSI.2024.3496589
https://doi.org/10.14778/3594512.3594527
https://doi.org/10.14778/3594512.3594527
https://doi.org/10.48550/arXiv.2405.16178

	Abstract
	1 Introduction
	2 Background
	2.1 Dense Information Retrieval in AI Systems
	2.2 Similarity Search

	3 Algorithmic-Hardware Co-design for Accurate and Scalable Dense Retrieval
	4 Sign Concordance Filtering
	5 DReX Architecture
	5.1 Overview
	5.2 DRAM Data Layout
	5.3 In-memory Sign Concordance Filtering
	5.4 Near-memory Acceleration of Similarity Score and Top-K Evaluation

	6 Methodology
	7 Experimental Results
	7.1 Dense Retrieval Performance
	7.2 Ablation Study
	7.3 RAG Performance
	7.4 Power and Area Analysis

	8 Discussion and Related Work
	9 Conclusions
	Acknowledgments
	References

