
THEME ARTICLE: CACHE COHERENT INTERCONNECTS AND
RESOURCE DISAGGREGATION TECHNIQUES

Compute-Enabled CXL Memory Expansion for
Efficient Retrieval Augmented Generation
Derrick Quinn, Cornell University, Ithaca, NY, 14850, USA

Neel Patel, Cornell University, Ithaca, NY, 14850, USA

Mohammad Alian, Cornell University, Ithaca, NY, 14850, USA

Abstract—Conventional near-memory processing architectures often strike
a trade-off between memory capacity and memory bandwidth, leading to high
initial data movement or high capital costs due to memory stranding. In this work,
we introduce compute-enabled memory expansion enabled by CXL as a solution
for the widespread adoption of near-memory processing at scale. We present the
Intelligent Knowledge Store (IKS), which is fundamentally a memory expander with
lightweight near-memory accelerators that leverage high internal memory bandwidth
to accelerate dense retrieval, a key component of retrieval-augmented generation
(RAG). IKS disaggregates its internal memory capacity and supports both
spatial and temporal multi-tenancy. It significantly accelerates high-quality dense
retrieval while enabling multi-tenancy with modest memory access interference.

N ear-memory processing (NMP) reduces data
movement overhead by placing computation
close to memory. Early products have shown

promise, but there is no consensus on how to balance
trade-offs in capacity, bandwidth, and complexity. Ex-
isting NMP systems often sacrifice memory capacity
to achieve higher bandwidth, causing large portions of
DRAM to remain underutilized and "stranded" when
operating in accelerator mode. Given the capital cost
and environmental impact of DRAM manufacturing,
it is essential to efficiently share and utilize memory
resources.

Memory disaggregation, where multiple compo-
nents share pooled memory, can address stranding.
However, current NMP products cannot flexibly share
their internal DRAM between accelerators and CPUs.
The emergence of Compute Express Link (CXL) pro-
vides a solution by enabling coherent, flexible memory
expanders that can integrate computation.

We introduce the Intelligent Knowledge Store (IKS),
a compute-enabled CXL memory expander that ac-
celerates dense retrieval tasks, crucial in Retrieval-
Augmented Generation (RAG) pipelines. Unlike tradi-

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

CPU +
DDR

CPU +
HBM

M
em

or
y

C
ap

ac
ity

Memory Bandwidth

Conventional Near-Memory Processing

IKS

Figure 1. Spectrum of near-memory processing.

tional architectures, IKS shares its physical address
space with the host CPU, allowing unused internal
DRAM to serve other applications and effectively elim-
inating memory stranding. As illustrated in Fig. 1,
IKS extends the NMP design space, balancing high
internal bandwidth for specialized tasks with efficient
memory sharing. More specifically, as shown in Fig. 2,
IKS implements eight LPDDR5X packages, directly
connected to and controlled by eight near-memory
accelerator (NMA) chips, providing a total of 512
GB of DRAM capacity and an aggregate internal

Month Published by the IEEE Computer Society Publication Name 1

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2025.3575280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 08,2025 at 17:10:54 UTC from IEEE Xplore. Restrictions apply.

CACHE COHERENT INTERCONNECTS AND RESOURCE DISAGGREGATION TECHNIQUES

SSD

CPU Host
Mem

GPU

CXL Ctrl

NMA NMA NMA

LP
D

D
R

5X

Pa
ck

ag
e

0

LP
D

D
R

5X

Pa
ck

ag
e

1

LP
D

D
R

5X

Pa
ck

ag
e

7

IKS
LLM Docs

CXL.mem/cache

…

PCIe x16 (64GBps)

Eight x2 PCIe Uplinks (64GBps)

Eight octa channel packages (1TBps)

Embeddings

Figure 2. A server enhanced with IKS for RAG appli-
cations. IKS leverages internal bandwidth and memory
parallelism of a CXL memory expander to accelerate
dense retrieval.

bandwidth of 1 TBps. The NMAs function either as
memory controllers for host CPU accesses or as
search engines over the embedding vectors in the
LPDDR5X packages. Leveraging both CXL.cache

and CXL.mem, IKS offloads computation seamlessly
and achieves higher performance without complex pro-
gramming overhead9.

Our contributions are:

• We motivate the broad deployment of exact
nearest neighbor search (ENNS) for dense re-
trieval in RAG systems.

• We propose IKS: a CXL-based memory ex-
pander that cost-effectively accelerates ENNS
while minimizing memory stranding.

• We explore CPU-NMP interfaces and CXL pro-
tocols to tightly integrate near-memory acceler-
ation into datacenter systems.

• We show that IKS effectively disaggregates its
internal memory with minimal performance in-
terference.

• We show that accelerating ENNS with IKS
achieves up to 37.0× higher throughput for
representative RAG applications compared to a
CPU baseline using approximate nearest neigh-
bor search.

Retrieval in Future AI Systems
Modern AI services increasingly integrate Large Lan-
guage Models (LLMs) with retrieval systems, enabling
Retrieval-Augmented Generation (RAG) to provide
timely, contextually relevant data. Underpinning these
systems are dense retrieval methods that map doc-
uments into high-dimensional vectors. Several vector
search strategies exist, including Exact Nearest Neigh-
bor Search (ENNS) as well as Approximate Nearest
Neighbor Search (ANNS) methods.

While graph-based ANNS methods like HNSW can
significantly limit the search space, they often suffer
from complex index management, and their searches
can be expensive at high accuracy targets. Although

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 16

R
et

rie
va

l T
im

e
(S

ec
.)

Batch Size

ENNS HNSW

(a) ENNS vs. HNSW

0.0

0.5

1.0

1.5

2.0

2.5

3.0

K = 1 K = 16 K = 1 K = 16 K = 1 K = 16

FiDT5 Llama-3-8B Llama-3-70B

Ti
m

e-
to

-F
irs

t-T
ok

en

Application

Retrieval (ENNS) Generation (H100)

(b) TTFT Breakdown

Figure 3. Comparison of ENNS and HNSW (Re-
call@32=0.95) retrieval, and Time-to-First-Token (TTFT)
Breakdown for three representative RAG applications
based on Wikipedia corpus. For generation, Llama-3-70B
uses 8x NVIDIA H100 GPUs, while FiDT5 and Llama-3-
8B use 1.

clustering-based ANNS methods like IVF have simpler
indexes, they often suffer from low retrieval accuracy.
In line with recent works10, we observe that a RAG
system with low retrieval accuracy can lead to an
increase in the number of items (i.e., context) that need
to be retrieved and sent to the downstream LLM for
high-quality generation. Such an increase in context
size can significantly increase the generation time and
negate the end-to-end benefits of using a faster ANNS
compared to a slower but exact ENNS. Moreover, in
RAG serving systems in datacenters, where batching
is common due to many concurrent users sending
inference requests, ANNS can lose its competitive
advantage compared to ENNS. As shown in Fig. 3a,
when multiple queries are processed together, ENNS
can reuse corpus vectors for every query in the batch,
enabling it to bridge the efficiency gap with a high-
quality HNSW.

Using ENNS however for RAG in current sys-
tems can significantly increase the Time-to-First-Token
(TTFT), the latency before producing the initial output
token. As shown in Fig. 3b, ENNS retrieval often
dominates TTFT.

Combining these observations, there is a strong
incentive to accelerate high-quality retrieval. ENNS’s
predictable, brute-force search pattern avoids the irreg-
ular data accesses and complex indexing structures of
graph-based ANNS, making it inherently easier to im-
plement and optimize in hardware. As a result, acceler-
ating ENNS can deliver significant gains in throughput
and responsiveness for next-generation RAG pipelines
through simple and flexible hardware. Nevertheless,
both graph-based and clustering-based ANNS algo-

2 Publication Title Month 2024

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2025.3575280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 08,2025 at 17:10:54 UTC from IEEE Xplore. Restrictions apply.

CACHE COHERENT INTERCONNECTS AND RESOURCE DISAGGREGATION TECHNIQUES

M
em

or
y

Co
nt

ro
lle

rs

PC
Ie

Co

nt
ro

lle
r

Control Unit

Query
Scratchpad

MAC 0

MAC 67

Dot-Product
Unit

Top-K Unit

Output
Scratchpad

Query
Scratchpad

MAC 0

MAC 67

Dot-Product
Unit

Top-K Unit

Output
Scratchpad

Processing
Engine 63

Processing
Engine 0

Control Signals

Fr
om

 M
em

or
y

Co
nt

ro
lle

r

Fr
om

 M
em

or
y

Co
nt

ro
lle

r

8⨉
 LP

DD
R5

X
Ch

an
ne

ls

⨉
2

PC
Ie

 U
pl

in
ks

Data Signals

…

…

Figure 4. Architecture of a single Near-Memory Acceler-
ator (NMA) chip. IKS implements eight NMA chips, each
next to an LPDDR5X package.

rithms can benefit from an ENNS accelerator because
similarity score evaluation is a core kernel shared
between ENNS and all ANNS algorithms.

Intelligent Knowledge Store to
Accelerate ENNS

Unlike a monolithic accelerator, IKS implements eight
lightweight NMAs, each paired with an LPDDR5X
package. This scale-out approach reduces off-chip and
on-chip data movement by using smaller NMA chips
instead of a large monolithic chip that can provision
enough chip shoreline to connect to eight LPDDR5X
packages with 64 LPDDR channels. Each LPDDR5X
package provides 64 GB of DRAM capacity and eight
16-bit channels, delivering a total of 136 GBps of
memory bandwidth. In contrast, achieving 512 GB of
capacity using high-capacity ×4 DDR5 devices would
require 32 devices and a large CXL device form factor
while yielding only 89.6 GBps of internal memory
bandwidth. The high internal memory bandwidth is
essential for IKS’s near-memory acceleration of ENNS.

Near-Memory Accelerator Architecture
Within each NMA, 64 processing engines compute
similarity scores between a query vector and batches
of embedding vectors. A column-major data layout
maps each dimension of 68 embedding vectors con-
tiguously, allowing efficient, output-stationary dot prod-
uct operations. This arrangement simplifies data distri-
bution to MAC units and leverages batching by reusing
corpus data, improving throughput and energy effi-
ciency.

Every vector dimension number of clock cycles,
each processing engine evaluates 68 similarity scores
that need to be inserted into an ordered list maintained
in the top-K unit. The insertion is overlapped with
the similarity score evaluation of the next 68 vectors
during the next vector dimension clock cycles. After
all the embedding vectors are fetched from memory
and evaluated for similarity, the top-K unit copies the
partial top-K list into the output scratchpad. The output
scratchpad is what the CPU reads and aggregates
(across 8 NMAs and possibly across multiple IKS units
in case of a multi-IKS setup) to construct the final top-K
list.

Offload Model
The IKS address space is shared with the host CPU.
The CPU runs the vector database application, which
offloads the similarity calculations (i.e., dot-products
between the query vectors and embedding vectors)
using iks_search(query), an API that does not
require a system call or context switch.

When iks_search(query) is called, the CPU
initiates a search by passing an offload context to
IKS. As we discuss in the next section, IKS lever-
ages CXL.mem and CXL.cache to enable CPU to
seamlessly initiate offload and receive offload com-
pletion notifications with minimal overhead. The NMAs
perform similarity calculations locally, returning top-K
candidates that the CPU aggregates.

The CXL-Enabled Interface
This section outlines current challenges in near-
memory architectures and describes how CXL-based
solutions like IKS address them. We then detail the
CPU-IKS interface enabled by CXL protocols.

Challenges in Current Near-Data Processing
Architectures
Cost: Traditional near-memory systems often require
custom hardware and software modifications, increas-
ing complexity and deployment costs.
Stranded Resources: NMAs and their dedicated
DRAM can remain underutilized, wasting capacity and
increasing the total cost of ownership.
Offload Tax: Fine-grain offloads are costly. Initiating
and completing offloads involves multiple PCIe round
trips, diminishing the potential performance gains.
Cache Coherency: Relying on software to flush CPU
cache contents to memory before initiating an offload
increases offload tax. This undermines the advantage

Month 2024 Publication Title 3

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2025.3575280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 08,2025 at 17:10:54 UTC from IEEE Xplore. Restrictions apply.

CACHE COHERENT INTERCONNECTS AND RESOURCE DISAGGREGATION TECHNIQUES

of moving computation closer to data instead of trans-
ferring data closer to compute resources.
Address Translation: Similar to cache coherency,
handling virtual addresses in accelerators can be ex-
pensive. Without an efficient translation scheme, page
faults and translation lookaside buffer (TLB) misses
become significant overheads.
Data Movement: Existing near-memory processing
products often require explicit data transfers into
accelerator-attached memory, incurring additional of-
fload tax7;3.

Opportunity with CXL
IKS leverages CXL features and makes several design
decisions to address the challenges listed above.
Reducing Cost: IKS uses industry-standard
PCIe/CXL interface for interoperability with different
devices and CPUs. In addition, IKS leverages a scale-
out NMA design to lower hardware complexity and
improve NMA chip manufacturing yield. Mapping IKS
memory directly into the host address space allows
the CPU to manage vector databases, minimizing
expensive code changes. To this end, we ported
Meta’s FAISS to IKS by adding an IKSIndexFlatIP

library similar to the existing GpuIndexFlatIP used
for GPU offload.
Reducing Resource Stranding: IKS disaggregates
its internal DRAM, allowing it to serve as both an
accelerator and a memory expander. This prevents
unused capacity from going to waste and reduces
overall cost. The NMAs are lightweight, minimizing idle
overhead.
Reducing Offload Tax: IKS utilizes the CXL protocol
to implement a low-latency interface between the CPU
and NMAs, reducing the offload tax. We provide details
of this interface later in this section.
Cache Coherency: IKS leverages the fact that em-
bedding vectors are rarely updated and implements a
software-managed coherency protocol where the CPU
flushes the caches after the rare updates. IKS utilizes
the CXL.cache protocol only to keep NMA control
registers and scratchpads coherent. These structures
total less than 200 KB of storage, maintaining a low
overhead for hardware cache coherency.
Virtual Memory Translation: With CXL.mem, the CPU
accesses IKS memory using host physical addresses.
The CXL controller translates these into device media
addresses for NMAs2, which operate on a direct-
segment model without page faults1. In IKS memory,
the embedding vectors reside contiguously, simplifying
address translation.
Minimizing Data Movement: CXL enables IKS to
share the address space between NMA and the host

Enqueue (CMP)

Host
CPU

CXL
Port

IKS CXL
Controller

Enqueue
Doorbell

Response

Ack.Polling

DMA Req.
DMA Transfer

Ack.

Tim
e

E
N

N
S

 O
ffload

Ack.

IKS CXL
Controller

Tim
e

Host
CPU

CPU
Cache

IKS
Cache

Ack.

Doorbell

Queries
Polling

Top-K
Doorbell

Polling

Polling

Host
CPU

CXL
Port

IKS CXL
Controller

Response
Polling

Ack.

Tim
e

Queries
Doorbell

E
N

N
S

 O
ffload

E
N

N
S

 O
ffload

Resp.
Polling

(a) Ring Buffer

Enqueue (CMP)

Host
CPU

CXL
Port

IKS CXL
Controller

Enqueue
Doorbell

Response

Ack.Polling

DMA Req.
DMA Transfer

Ack.

Tim
e

E
N

N
S

 O
ffload

Ack.

IKS CXL
Controller

Tim
e

Host
CPU

CPU
Cache

IKS
Cache

Ack.

Doorbell

Queries
Polling

Top-K
Doorbell

Polling

Polling

Host
CPU

CXL
Port

IKS CXL
Controller

Response
Polling

Ack.

Tim
e

Queries
Doorbell

E
N

N
S

 O
ffload

E
N

N
S

 O
ffload

Resp.
Polling

(b) CXL.mem

Enqueue (CMP)

Host
CPU

CXL
Port

IKS CXL
Controller

Enqueue
Doorbell

Response

Ack.Polling

DMA Req.
DMA Transfer

Ack.

Tim
e

E
N

N
S

 O
ffload

Ack.

IKS CXL
Controller

Tim
e

Host
CPU

CPU
Cache

IKS
Cache

Ack.

Doorbell

Queries
Polling

Top-K
Doorbell

Polling

Polling

Host
CPU

CXL
Port

IKS CXL
Controller

Response
Polling

Ack.

Tim
e

Queries
Doorbell

E
N

N
S

 O
ffload

E
N

N
S

 O
ffload

Resp.
Polling

(c) CXL.cache

Figure 5. Options for IKS-CPU interface. PIO configura-
tion is similar to CXL.mem.

CPU. Thus, NMAs directly access data in place without
any data movement required before an offload .

IKS-CPU Interface
In this section, we explore the design space of the
CPU-IKS interface and discuss the conventional in-
terfaces (Ring Buffer and PIO) as well as those
enabled by CXL. Fig. 5 illustrates and compares these
interfaces.
Ring Buffer: Using a descriptor ring buffer that holds
pointers to buffers allocated in the host memory and
a DMA engine, an offload can be initialized by the
CPU preparing a context buffer and a descriptor that
points to the context buffer, pushing the descriptor
to the head of the descriptor ring, and writing into a
doorbell register on the IKS. Then, IKS utilizes the
DMA to read the descriptor to access the pointer of
the context buffer and issues another DMA access to
read the context buffer from the host memory to start
the offload. Once the offload is completed, IKS uses
a DMA access to write the result to an output buffer
and pushes a completion descriptor to the ring buffer,
notifying the CPU of the completion of the offload. The
CPU should either poll the completion ring or rely on
interrupts from IKS to receive the notification of the
offload completion.

The descriptor ring implementation has the advan-
tage of being general, allowing multiple concurrent of-
floads and batching communication between the CPU
and IKS for high throughput. However, this implemen-
tation suffers from high latency due to several PCIe
round trips and is not suitable for fine-grain offloads.
Programmed I/O (PIO): The host CPU can use the
PCIe protocol (i.e., CXL.io) to directly write into
Memory-Mapped IO (MMIO) registers and scratchpad
memory within the IKS without going through one level
of indirection, which involves the ring buffer and then

4 Publication Title Month 2024

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2025.3575280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 08,2025 at 17:10:54 UTC from IEEE Xplore. Restrictions apply.

CACHE COHERENT INTERCONNECTS AND RESOURCE DISAGGREGATION TECHNIQUES

DMA. In this implementation, the host CPU directly
writes the context buffer to the NMAs within each IKS
unit using the CXL.io protocol and then writes into a
doorbell register to start the offload.

Although PIO removes the need for two DMA trans-
actions to initiate the offload and can directly write
into the MMIO registers and scratchpads of NMAs,
the PIO bandwidth through CXL.io is limited. Such
high-overhead direct writes can increase the offload
initialization time for large contexts, even beyond the
descriptor ring implementation.
CXL.mem Interface: The CXL.mem protocol enables
IKS to use CXL.mem instead of CXL.io to access
the MMIO registers and context scratchpads, provid-
ing higher bandwidth and lower latency compared to
CXL.io due to cacheline flit-based multiplexing at the
PCIe physical layer, compared to PCIe packet-based
multiplexing at the PCIe TLP layer for CXL.io2.

Although this implementation can potentially deliver
much lower offload initialization latency compared to
the PIO configuration, it requires CPU cycles to write
the long-latency uncacheable non-temporal writes into
the MMIO register and scratchpads or use temporal
writes followed by a cache flush. For completion no-
tification, this implementation needs to either rely on
interrupts or polling. In the interrupt case, once an
interrupt is received, the CPU needs to execute load in-
structions to read the result into the CPU. These loads
are directly satisfied by IKS. In the polling case, the
CPU should poll an uncacheable IKS-side completion
register, which, due to the high latency of the loads,
can take a significant number of CPU cycles. Once a
completion is detected, the CPU should load the result
from IKS.
CXL.cache Interface: This interface complements the
CXL.mem interface by having the MMIO registers and
scratchpad spaces coherent through CXL.cache, re-
lying on a hardware-provided cache coherency proto-
col to communicate context buffers and notifications.
This implementation not only simplifies the interface
between the CPU and IKS but also reduces the over-
head of initiating an offload, receiving notifications, and
transferring the result to the CPU.

Disaggregating IKS Memory
IKS provides 512 GB of memory accessible to the
host over a ×16 PCIe Gen5 link, capable of up to 64
GBps to the CPU. Internally, IKS interconnects eight
LPDDR5X packages, each offering 136 GBps, for a
total internal bandwidth exceeding 1 TBps – over 16×
higher than the external bandwidth. This significant
difference between the external and internal available

memory bandwidth in IKS creates an opportunity to
co-run ENNS and CPU applications with minimal in-
terference. The memory controller inside the NMAs
implements a physical address mapping hash function
that maps contiguous 4 KB OS pages to a single
memory channel. In this way, each OS page is colored
with a channel ID. IKS exposes the page color to the
OS, enabling the memory allocator to map different
applications to different channels6. This memory allo-
cation effectively controls where the future accesses
of applications/tenants will be physically routed and
enables IKS to support two modes for multi-tenancy:
Spatial Multi-Tenancy: IKS provides flexibility for fine-
grain LPDDR channel partitioning to ensure quality of
service and effectively eliminate interference between
different classes of applications. Each LPDDR5X pack-
age implements 8 channels, each serving 8 GB of
DRAM space at a theoretical bandwidth of 17 GBps.
With channel partitioning, CPU and ENNS traffic can
be completely isolated (because ENNS lightly utilize
the external bandwidth) by mapping them to different
channels.
Temporal Multi-Tenancy: Alternatively, IKS can share
channels between ENNS and CPU applications. By
allowing both applications to dynamically access all
channels, IKS can fully leverage its internal bandwidth
for ENNS when needed, maximizing ENNS perfor-
mance. In this scenario, the host and ENNS may
contend for bandwidth, but overall throughput and re-
source utilization are improved.

Methodology
We emulate IKS on a dual-socket Intel Xeon Gold
6554S server. Each socket has 512 GB of DRAM,
and we use one socket to model the IKS device and
NMAs, and the other as the host CPU. Although we
do not use a real CXL device for our evaluation, we
hypothesize that a well-optimized CXL implementation
would exhibit a performance profile similar to that of
a multi-socket CPU. This methodology is widely used
in prior works for evaluating the performance of CXL-
based systems8.
Interfaces: We implement the Ring Buffer,
CXL.mem, and CXL.cache interfaces described
earlier. For Ring Buffer, we leverage the on-chip
Data Streaming Accelerator (DSA) on the remote
socket to emulate DMA transfers, descriptor handling,
and completion notifications. This approach provides
optimistic performance due to UPI latency/bandwidth
differences compared to PCIe.

For CXL.mem and CXL.cache, we allocate buffers
on the remote socket to emulate query and output

Month 2024 Publication Title 5

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2025.3575280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 08,2025 at 17:10:54 UTC from IEEE Xplore. Restrictions apply.

CACHE COHERENT INTERCONNECTS AND RESOURCE DISAGGREGATION TECHNIQUES

0.0

0.5

1.0

1.5

2.0

100B 512B 1.5KB 2KB 6KB 8KB 24KB 96KB

N
o
rm

a
liz

e
d

 O
ff

lo
a

d
 O

v
e

rh
e

a
d

Offload Context Size

Ring Buffer CXL.mem CXL.cache

Figure 6. Comparing the offload tax (communicating con-
text buffers) for Ring Buffer, CXL.mem, and CXL.cache

scratchpads. We use instructions like MOVDIR64B for
direct writes and CLDEMOTE to model coherent cache-
line operations. Completion notifications are emulated
via remote writes, combined with polling (CXL.mem) or
cache invalidations (CXL.cache).

Multi-Tenancy: To study spatial and temporal multi-
tenancy, we use Sub-NUMA Clustering (SNC) to par-
tition channels and emulate different memory band-
widths. Each DDR5-4000 channel stands in for two
LPDDR5X channels, matching the ratio of bandwidths
and allowing fair comparisons. We throttle the local
CPU application’s memory bandwidth to not exceed
the modeled 8 GBps uplink between an NMA and CPU,
aligning with the IKS design.

RAG Pipeline Evaluation: We follow Karpukhin et al.5

to construct a Wikipedia-based corpus and fine-tune
query embedding model. To evaluate generative mod-
els, we use the open-weight 8- and 70-billion parame-
ter and Llama-3 models. Additionally, we follow Izacard
and Grave4 to fine-tune a T5-based generative model
based on Google’s NQ “train" dataset. From these,
we construct three RAG pipelines, labeled Llama-3-
8B, Llama-3-70B, and FiDT5. Queries and ground-
truth answers are taken from the the NQ “dev" dataset.
Each query is processed by generating a query em-
bedding, performing retrieval (ENNS or HNSW), and
then feeding top-K documents to the generative model.
Accuracy for FiDT5 is exact match, while for Llama-3
models we use Rouge-L Recall.

For HNSW, we use FAISS with parameters chosen
to maximize performance while maintaining a reason-
able graph. The HNSW index is built with M = 32,
efConstruction = 128, and runtime efSearch

values chosen to balance speed and accuracy.

Evaluation
We evaluate the IKS-CPU interfaces, multi-tenancy
(MT) modes, and overall IKS performance on RAG
applications.

IKS-CPU Interface
Fig. 6 shows offload overhead for Ring Buffer,
CXL.mem, and CXL.cache. At small context sizes,
CXL.cache and CXL.mem outperform Ring Buffer

due to reduced initialization overhead. For large con-
texts (e.g., 96 KB), Ring Buffer can leverage DMA
for bulk transfers, surpassing CXL.mem. CXL.cache
consistently achieves the lowest overhead, improving
offload efficiency by up to 85.5% and 86.2% over
CXL.mem and Ring Buffer, respectively.

IKS Multi-Tenancy and Memory
Disaggregation

App Metric Solo Run Spatial MT

ENNS
Search Time 313 ms 612 ms

QPS 51.0 q/s 26.1 q/s

Memcached
P50 111µs 111 µs
P99 191µs 199 µs
RPS 421.9k 421.8k

TABLE 1. Comparing Memcached and ENNS perfor-
mance when running solo on IKS and with spatial multi-
tenancy where half of the LPDDR channels are allocated
to each application. ENNS corpus size is 256 GB.

Spatial Multi-Tenancy: Table 1 compares solo and
co-run configurations of ENNS and Memcached. Al-
locating half the channels to ENNS nearly halves its
QPS, directly reflecting reduced memory bandwidth.
Memcached latency and throughput remain essentially
unaffected, demonstrating robust isolation of CPU traf-
fic from ENNS.
Temporal Multi-Tenancy: Fig. 7 illustrates ENNS ex-
ecution time and Memcached latency under temporal
multi-tenancy. As corpus size grows, ENNS overhead
rises modestly (by about 11%), and Memcached sees
a small median latency increase but a more notice-
able P99 increase. Temporal sharing ensures flexibility
and high overall utilization, though it introduces some
interference.

IKS Performance on RAG Applications
Fig. 8 compares ENNS on CPU, HNSW on CPU,
and ENNS accelerated by IKS. While HNSW offers
higher throughput than CPU-based ENNS, it sacri-
fices accuracy. With IKS acceleration, ENNS retrieval
ceases to be a bottleneck, boosting throughput without

6 Publication Title Month 2024

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2025.3575280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 08,2025 at 17:10:54 UTC from IEEE Xplore. Restrictions apply.

CACHE COHERENT INTERCONNECTS AND RESOURCE DISAGGREGATION TECHNIQUES

0
100
200
300
400
500
600
700

0
50

100
150
200
250
300
350

64 128 256 384 448

EN
N

S
Se

ar
ch

 T
im

e
(m

s)

M
em

ca
ch

ed
 L

at
en

cy
 (µ

s)

ENNS Corpus Size (GB)

p50 p99 ENNS (Solo) ENNS (Temporal MT)

Figure 7. Latency of Memcached application and ENNS
running on IKS with temporal memory disaggregation. A
batch size of 16 is used. To show the impact of the impact
of ENNS on Memcached, ENNS QPS is fixed to 32 with
varying corpus sizes, affecting internal memory bandwidth
utilization for ENNS configs. Solo is when Memcached is
not co-running.

1 4 16

128

1 4
16

128

1 4

16

1281
4 16 32

1
4 16

32

1
4

16

32
1

4
16

32

1

4

16
32

1
4

16
32

 1/4

 1/2

1

2

4

8

16

32

64

128

0% 10% 20% 30% 40% 50% 60%

Q
ue

rie
s/

se
c

(L
og

 s
ca

le
)

RAG Accuracy

FiD (ENNS) FiD (HNSW) FiD (IKS)
Llama-8B (ENNS) Llama-8B (HNSW) Llama-8B (IKS)
Llama-70B (ENNS) Llama-70B (HNSW) Llama-70B (IKS)

Figure 8. Comparison of accuracy and throughput of three
RAG pipelines with different LLMs (FiDT5, Llama-3-8B,
Llama-3-70B) with three different retrieval configurations:
ENNS running on CPU, HNSW running on CPU and IKS
which offloads ENNS to IKS. The data labels represent
document count (K value). HNSW is configured with M,
efConstruction, and efSearch of 32, 128, and 4096, re-
spectively. Batch size 16.

diminishing accuracy. This enables high-quality RAG
pipelines to achieve both high performance and accu-
racy, outperforming HNSW configurations.

Conclusion
In this work, we presented Intelligent Knowledge Store
(IKS), a compute-enabled CXL memory expander that
operates as a vector database accelerator while simul-
taneously disaggregating its internal memory to pro-
vide higher memory capacity. IKS leverages CXL.mem

and CXL.cache to implement an optimized CPU-
Accelerator interface. IKS significantly improves the

performance of RAG applications by offering acceler-
ated, scalable, and accurate dense retrieval.

Near-memory processing enabled by CXL presents
numerous opportunities for further research. We see
IKS as an example of a near-memory accelerator
design that can leverage economies of scale to be
successfully deployed, powering future compound AI
systems.

REFERENCES
1. Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,

Mark D. Hill, and Michael M. Swift. Efficient virtual
memory for big memory servers. In Proceedings of
the 40th Annual International Symposium on Com-
puter Architecture, ISCA ’13, page 237–248, New
York, NY, USA, 2013. Association for Computing
Machinery.

2. Debendra Das Sharma, Robert Blankenship, and
Daniel Berger. An introduction to the compute
express link (cxl) interconnect. ACM Comput.
Surv., 56(11), July 2024.

3. Fabrice Devaux. The true processing in memory
accelerator. In 2019 IEEE Hot Chips 31 Sympo-
sium (HCS), pages 1–24, 2019.

4. Gautier Izacard and Edouard Grave. Leveraging
passage retrieval with generative models for open
domain question answering. In Paola Merlo, Jorg
Tiedemann, and Reut Tsarfaty, editors, Proceed-
ings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 874–880, Online,
April 2021. Association for Computational Linguis-
tics.

5. Vladimir Karpukhin, Barlas Oğuz, Sewon Min,
Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen tau Yih. Dense passage retrieval
for open-domain question answering. arXiv, cs.CL,
2020.

6. R. E. Kessler and Mark D. Hill. Page placement
algorithms for large real-indexed caches. ACM
Trans. Comput. Syst., 10(4):338–359, nov 1992.

7. Sukhan Lee, Shin-haeng Kang, Jaehoon Lee,
Hyeonsu Kim, Eojin Lee, Seungwoo Seo, Hosang
Yoon, Seungwon Lee, Kyounghwan Lim, Hyun-
sung Shin, Jinhyun Kim, O Seongil, Anand Iyer,
David Wang, Kyomin Sohn, and Nam Sung Kim.
Hardware architecture and software stack for pim
based on commercial dram technology : Industrial
product. In 2021 ACM/IEEE 48th Annual In-
ternational Symposium on Computer Architecture
(ISCA), pages 43–56, 2021.

8. Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel

Month 2024 Publication Title 7

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2025.3575280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 08,2025 at 17:10:54 UTC from IEEE Xplore. Restrictions apply.

CACHE COHERENT INTERCONNECTS AND RESOURCE DISAGGREGATION TECHNIQUES

Ernst, Pantea Zardoshti, Stanko Novakovic, Mon-
ish Shah, Samir Rajadnya, Scott Lee, Ishwar Agar-
wal, Mark D. Hill, Marcus Fontoura, and Ricardo
Bianchini. Pond: Cxl-based memory pooling sys-
tems for cloud platforms. In Proceedings of the
28th ACM International Conference on Architec-
tural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2023,
page 574–587, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery.

9. Derrick Quinn, Mohammad Nouri, Neel Patel,
John Salihu, Alireza Salemi, Sukhan Lee, Hamed
Zamani, and Mohammad Alian. Accelerating
retrieval-augmented generation. In Proceedings of
the 30th ACM International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, Volume 1, ASPLOS ’25, page
15–32, New York, NY, USA, 2025. Association for
Computing Machinery.

10. Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua
Ling. Corrective retrieval augmented generation.
arXiv, 2024. arXiv:2401.15884.

Derrick Quinn is a Ph.D. student in Electrical and
Computer Engineering at Cornell University. Derrick’s
research interests are computer architecture and sys-
tems at scale. Contact him at dq55@cornell.edu.

Neel Patel is a Ph.D. student in Electrical and Com-
puter Engineering at Cornell University. Neel’s research
interests are computer architecture and systems at
scale. Contact him at nmp83@cornell.edu.

Mohammad Alian is an Assistant Professor in Elec-
trical and Computer Engineering at Cornell University.
He completed his Ph.D. at the University of Illinois
Urbana Champaign. His research team is focused on
redefining the data-delivery hierarchy of future data
centers. Contact him at malian@cornell.edu.

8 Publication Title Month 2024

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2025.3575280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 08,2025 at 17:10:54 UTC from IEEE Xplore. Restrictions apply.

	Retrieval in Future AI Systems
	Intelligent Knowledge Store to Accelerate ENNS
	Near-Memory Accelerator Architecture
	Offload Model

	The CXL-Enabled Interface
	Challenges in Current Near-Data Processing Architectures
	Opportunity with CXL
	IKS-CPU Interface

	Disaggregating IKS Memory
	Methodology
	Evaluation
	IKS-CPU Interface
	IKS Multi-Tenancy and Memory Disaggregation
	IKS Performance on RAG Applications

	Conclusion
	Biographies
	Derrick Quinn
	Neel Patel
	Mohammad Alian

