LongSight: Compute-Enabled Memory to Accelerate
Large-Context LLMs via Sparse Attention

Derrick Quinn
Cornell University

E. Ezgi Yiicel

Cornell University

Jinkwon Kim*
Cornell University

Ithaca, USA Ithaca, USA Ithaca, USA
dg55@cornell.edu ey273@cornell.edu jinkwon.kim@cornell.edu
José F. Martinez Mohammad Alian
Cornell University Cornell University
Ithaca, USA Ithaca, USA

martinez@cornell.edu

Abstract

Large input context windows in transformer-based LLMs help min-
imize hallucinations and improve output accuracy and personaliza-
tion. However, as the context window grows, the attention phase
increasingly dominates execution time. Key—Value (KV) caching
alleviates part of this cost by avoiding redundant computation,
but the KV cache itself can quickly exceed the capacity of today’s
GPU high-bandwidth memory (HBM). In this work, we present
LongSight, an algorithm-hardware co-design framework for ac-
celerating attention in large-context scenarios. LongSight lever-
ages a compute-enabled CXL memory device, originally designed
for dense retrieval acceleration, to offload KV cache storage and
retrieval. Therefore, LongSight effectively elevates the value of
relatively low-cost LPDDR DRAM to that of high-end HBM. We
demonstrate that, with just a single GPU and a single compute-
enabled CXL memory expander, LongSight can efficiently support
context lengths of up to 1 million tokens for state-of-the-art Llama
models.

ACM Reference Format:

Derrick Quinn, E. Ezgi Yiicel, Jinkwon Kim, José F. Martinez, and Moham-
mad Alian. 2025. LongSight: Compute-Enabled Memory to Accelerate Large-
Context LLMs via Sparse Attention. In 58th IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO ’25), October 18-22, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3725843.
3756062

1 INTRODUCTION

Pretrained large language models (LLMs) require access to up-
to-date and relevant information to minimize hallucinations and
generate accurate, personalized outputs. This information is typi-
cally provided as part of the model’s input context. Indeed, LLMs
are increasingly being applied in settings that require extended

“Work done while at SK hynix.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MICRO °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1573-0/25/10

https://doi.org/10.1145/3725843.3756062

malian@cornell.edu

context windows, driven by test-time techniques (e.g., chain-of-
thought, few-shot, scratchpad prompting, ReACT, etc.) [4, 26, 40, 43],
retrieval-augmented generation [17], and the growing complexity
of input data, such as long-form documents, code, or multi-turn
interactions.

As context lengths grow, so too do the computational and mem-
ory demands of inference. In particular, the attention phase in
transformer-based LLMs tends to dominate execution time as the
context window increases. Key-Value (KV) caching helps mitigate
this by avoiding redundant computation in exchange for increased
memory pressure. Unfortunately, with larger context windows,
the size of the KV cache can quickly exceed the capacity of high-
bandwidth memory (HBM) available on current neural processing
units (NPUs), such as GPUs or TPUs.

DReX [34] is a recent compute-enabled CXL memory expander
for accelerating dense retrieval. Dense retrieval is increasingly
adopted for implementing retrieval-augmented generation (RAG),
where retrievable items are stored as high-dimensional embedding
vectors in a vector database, and semantically relevant items are
identified by evaluating cosine similarity between a query vector
and the embeddings. DReX integrates lightweight accelerators in
and near the LPDDR DRAM chips of a high-capacity CXL memory
expander. It further introduces a sign-bit filtering mechanism that
rapidly prunes the search space without fetching full embedding
vectors from DRAM, thereby significantly increasing the perfor-
mance of dense retrieval.

In this work, we introduce LongSight, an algorithm-hardware
co-design framework for accelerating attention in large-context
inference. Building on DReX’s foundation, LongSight extends its
functionality beyond RAG, repurposing the same compute-enabled
CXL memory expander to accelerate the attention mechanism in
transformer-based LLMs. As a result, LongSight delivers high per-
formance for very large attention contexts.

More specifically, LongSight enables the NPU to store the KV
cache through the load/store interface provided by CXL in DReX.
LongSight implements a hybrid dense—sparse attention algorithm:
the NPU retains a sliding window of the most recent KV pairs in its
local HBM and performs dense attention over this window, while
sparse attention is offloaded to DReX. For the sparse component, the
NPU submits an attention request containing the query vector(s) to
DReX through the CXL interface. DReX then efficiently retrieves
a top-k list of keys with the highest dot-product similarity to the

https://orcid.org/0009-0000-5862-6565
https://orcid.org/0009-0000-0460-8230
https://orcid.org/0000-0002-1744-1393
https://orcid.org/0000-0001-5451-5681
https://orcid.org/0000-0002-4622-2181
https://doi.org/10.1145/3725843.3756062
https://doi.org/10.1145/3725843.3756062
https://doi.org/10.1145/3725843.3756062

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

query vector(s). Finally, the NPU completes the attention operation
by applying a softmax over the combined set of dense and sparse
keys.

We demonstrate that LongSight, equipped with a single GPU and
a single DReX unit, can efficiently support context lengths of up
to 1 million tokens for state-of-the-art Llama-3 1B and 8B models.
Such context length is only possible to support with 2 H100 GPUs
in current systems. At the maximum context length supported by a
single GPU, LongSight achieves up to 8.1-9.6X higher throughput
and 3.6-11.9x higher tokens per second per user for the Llama-3
models.

Our key contributions are:

e We corroborate prior findings that attention in transformers
is predominantly influenced by a small subset of past tokens
whose Key vectors exhibit high dot-product similarity with
the current Query vectors. Building on this insight, we en-
abled large-context attention by leveraging recent advances
in dense-retrieval acceleration.

e We propose a hybrid dense-sparse attention algorithm that
keeps the short-term attention window inside NPU’s HBM
and implements long-term attention as a vector database of
Keys and Values, accessed via top-k dot-product similarity.

e We repurpose DReX, a recently proposed compute-enabled
CXL memory expander originally designed for dense re-
trieval, to accelerate our hybrid attention mechanism.

2 BACKGROUND

2.1 Transformer-Based LLM

Figure 1 illustrates a state-of-the-art LLM architecture. LLM infer-
ence consists of prefill and decode stages. The prefill stage con-
structs a KV cache for a user input prompt, while the decode stage
uses the KV cache to generate new tokens in an autoregressive
manner. Both stages share the same weight matrices and model
architecture, comprising token embedding and multiple decoder
layers. Each decoder layer sequentially performs QKV generation,
multi-head attention, output projection, and feed-forward networks.
QKV generation creates Query (Q), Key (K), and Value (V) tensors
in parallel for each input token using the layer’s weight matrices.
After that, Q, K, and V tensors are divided into multiple heads
and passed through multi-head attention. In multi-head attention,
each head computes attention scores for each Q tensor over all
preceding K tensors in the input sequence. The attention scores
are passed through a softmax function and then multiplied by the
corresponding V tensors. Using multiple heads allows the model to
attend to information from different representation subspaces at
different positions. Multi-head attention enables transformers to
capture diverse contextual relationships [39]; for example, one head
may determine part of speech, while another determines sentiment.
The resulting vectors are projected through an output projection
layer and added to the input embeddings via a residual connection,
followed by a feed-forward networks.

The left and right parts of Figure 1 illustrate the decoder layer in
the prefill and decode stages, respectively. Regardless of the stage,
QKV generation, output projection, and feed-forward networks can
benefit from batching by sharing weight matrices across multiple

Derrick Quinn, E. Ezgi Yicel, Jinkwon Kim, José F. Martinez, and Mohammad Alian

users, enabling matrix-matrix multiplications. In contrast, since at-
tention utilizes Q, K, and V tensors that encode information for each
input token, KV data cannot be re-used across a batch due to differ-
ences in user prompts. The input length varies depending on the
prompt: in the prefill stage, it corresponds to the full user prompt
length, whereas the decode stage receives only a single input token.
Consequently, attention in the prefill stage involves matrix-matrix
multiplications, while the decode stage requires vector-matrix mul-
tiplications.

In summary, except for attention in the decode stage, most LLM
operations are matrix-matrix multiplications, allowing GPUs to
efficiently utilize compute resources. However, attention in the
decode stage involves vector-matrix multiplication, leading to high
memory bandwidth demands and underutilization of GPU compute
resources. Moreover, as the input context length increases, more
K and V tensors are required for attention. Prior work shows that,
for these reasons, the attention for the decoder stage can become
a primary performance bottleneck, significantly impacting token
generation throughput [8, 9].

2.2 Tiered GPU Memory and CXL

Recent advancements in GPU-centric architectures and systems
have led to the development of tiered GPU memory, which expands
the byte-addressable memory space of GPUs from local HBM to
include host DDR memory and even NVMe SSDs [30, 35]. These
GPU-centric approaches allow GPUs to initiate on-demand access
to data—whether in memory or storage—without relying on the
CPU to initiate or trigger such accesses.

The simplest implementation of tiered GPU memory maps host
memory into the GPU’s address space, enabling the GPU to either
access host memory through load/store instructions executed by
GPU threads or initiate DMA transfers. NVIDIA’s recently intro-
duced SCaled Accelerated Data Access (SCADA) API enables GPU
threads to perform multi-granular and random accesses to datasets
of unbounded size across the tiered memory hierarchy [24].

Compute Express Link (CXL) is an industry standard designed to
provide low-latency, byte-granular access to disaggregated memory
while supporting cache coherence between devices—traditionally
connected via PCle interconnects without coherency. CXL has al-
ready been adopted by hyperscalers [21] and is being used to build
rack-scale shared memory systems [10, 11, 23]. In this work, we
focus on CXL’s capability to attach DDR-based memory (“Type-3”
devices) over PCle to the processor, making it directly accessible
via standard load/store instructions.

3 State-of-the-Art in Long-Context Generation

Prior work has shown that the cost of full attention grows to domi-
nate runtime as sequence length increases [20]. The total sequence
length includes both the size of the input context and the num-
ber of output tokens generated during inference. Both dimensions
are becoming increasingly important in modern LLM applications.
Longer input contexts are needed to provide grounding and give
the LLM access to fresh, relevant information for accurate and up-
to-date generation. Meanwhile, generating longer output sequences
is crucial in tasks requiring reasoning and multi-step planning, par-
ticularly in agentic Al systems such as OpenAlI DeepResearch [28],

LongSight: Compute-Enabled Memory to Accelerate Large-Context LLMs via Sparse Attention

Prefill Stage |
|

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Decode Stage

Decoder
Layer 1

[—— &Nbaichxl-mxdemb) Input Prompt I Input Token Input Token [s JNbat§h><1><demb]
eneration eneration
L% (e Nreag) \ [TX{d emb/Nhead)
LinX{ e/ Nhgag) Lin™{demb/ Nhesa) \ ! 1(demb/Nheag)LX(demp/Nhead)
Head 0 Attention [Head n'] I Head O Attention Head n
—— Attention Token Token Token | 4 Attention
Embedding Embeddlng Embedding I T Quen |
Kt had sl

-

|
|
|
|
|
|
:
|
|
Add,
/| Decoder KV,
sV Il layer2 |
/ : |
|
]
|
|
|
|
|
|

l
I dd Add
Decoder K\V| Decoder | SV\—VV“’“*
LayerZ Layer2 | x v
R | II,—V—V :
; ; | Add IAdd : ! = ;

INpatchXLinXdemp I Decoder |[K,V, Decoder KV| Decoder |1 I NpatenXIXdemp
(Output Projection iy Layern Layern Layer n |G Output F;r:olecnon)

Ebeatcthinxdemb ’I l \‘ r:FPJnatchxlxdemb
(Feed ForwziiilN etwlt_)rk(s1) (this) (Feed Forwa{LcilNetw;)rI;s)

I XLijnX) X1X
Ry batch™-in™emb Output Token Output Token Output Token Ry batch emb

Figure 1: Inference pipeline of transformer-based LLMs.

which use reinforcement learning to guide multi-round generation
and reasoning based on previously generated tokens. These sys-
tems demand support for LLMs capable of attending to both a large
number of input tokens and a growing number of generated output
tokens.

As the total context length increases, the attention mechanism
becomes a significant bottleneck—both in terms of FLOPs and mem-
ory capacity. Furthermore, unlike the feedforward network or other
components that benefit from batching, attention costs cannot be
amortized across users. This limitation becomes increasingly prob-
lematic as batch sizes grow to improve computational efficiency.
As a result, these challenges have driven the development of non-
quadratic partial attention mechanisms (i.e., sparse attention) and
accelerated attention execution using in-memory and near-memory
computing architectures.

3.1 Software-Based Sparse Attention

We begin by discussing software-based approaches to sparse at-
tention, which have gained popularity as a means to reduce the
computational cost of attention. Reformer [15] implements sparse
attention in software by using locality-sensitive hashing (LSH) to
filter out context tokens that are unlikely to be relevant. Only the
surviving tokens are then passed to the attention mechanism. This
probabilistic filtering reduces the computational complexity of the
remaining attention phase.

However, Reformer’s LSH-based filtering introduces per-token
overhead with linear time complexity. Moreover, Reformer per-
forms multiple rounds of filtering, each requiring either additional
storage or recomputation of hash buckets. As a result, the bene-
fits of sparsity can be offset by these overheads when executed on
modern hardware, which is highly optimized for dense dot-product
computation.

Additionally, Reformer assumes that the queries and keys are
identical, which prevents the use of configurations with fewer KV

heads than query heads—a common state-of-the-art technique used
to reduce memory footprint and improve attention efficiency.

Longformer [2] takes a different approach to sparse attention by
implementing non-exact attention using sliding windows combined
with limited global attention. A key advantage of the sliding window
mechanism is its computational simplicity and its compatibility
with current hardware, enabling efficient execution.

However, sliding-window attention alone is inherently limited
in its ability to capture long-range dependencies. To address this,
Longformer augments the local sliding-window attention with a
small set of global attention tokens that can attend broadly across the
sequence. The sparse attention mask in Longformer is pre-defined
and static, allowing models to be fine-tuned for specific tasks with
customizable attention patterns. This approach enables increased
sparsity relative to baseline models by tailoring the mask to the
structure of each task.

Despite these benefits, a key limitation of Longformer’s design
is that attention masks must be manually configured on a per-task
basis, which has been cited as a significant usability and general-
ization challenge [2].

DeepSeek AI [44] reports that “blockwise selection is crucial
to achieve efficient computation on modern GPUs.” Building on
this insight, they propose NSA (Natively trainable Sparse Atten-
tion), which combines block-level sparsity with compressed dense
attention and sliding-window attention. While block-level spar-
sity enables efficient implementation on GPU hardware, it imposes
a limitation on the achievable overall sparsity due to its coarse
granularity. Furthermore, NSA requires long-context fine-tuning
to perform effectively, which introduces additional computational
and financial cost.

In summary, existing software-based sparse attention implemen-
tations struggle to achieve both high sparsity and low filtering
overhead without requiring significant model- or task-specific mod-
ifications.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

3.2 Hardware-Based Attention Acceleration

NeuPIMs [9] and AttAcc [29] explore hybrid architectures that
combine traditional neural processing units (NPUs), such as GPUs,
with processing-in-memory (PIM) hardware for large-scale LLM
inference. Batched LLM inference workloads exhibit significant het-
erogeneity; therefore, NeuPIMs/AttAcc perform compute-bound
pipeline stages (e.g., Prefill and FFN) on the NPU while offloading
the memory-bound attention computation during the decode phase
to PIM units. However, a key limitation of these works is their use
of full dense attention, which remains expensive even when exe-
cuted on PIM hardware. Furthermore, NeuPIMs relies on a dual row
buffer mechanism, which poses major implementation challenges,
requiring substantial modifications to the DRAM circuit design.

CENT [8] adopts a system-level, memory-centric approach by
offloading all transformer operations to near- and in-memory de-
vices. A key benefit of CENT is that it utilizes high-bandwidth
PIM units to accelerate memory-bound computations. However,
CENT implements BFloat16 multiply-accumulate (MAC) units for
attention within memory, which incurs substantial area and en-
ergy overhead. Additionally, CENT’s system-wide design replaces
highly optimized GPUs or NPUs with custom hardware to handle
compute-bound transformer components, increasing overall sys-
tem cost. Like NeuPIMs, CENT also implements dense attention,
making it difficult to extend the architecture to support efficient
sparse attention.

DynaX [42] takes a different approach by leveraging sparsity
within query vectors and employing 4- or 6-bit quantization for
queries and keys to reduce the cost of computing approximate
attention scores. These approximate scores are then used to con-
struct a block-based sparse attention mask. DynaX further exploits
structured sparsity within filtered blocks using custom hardware.
However, its performance is ultimately limited by the cost of loading
Keys during filtering. Even with quantization, at least % - % ~ 9.4%
of the Keys’ memory footprint must be loaded to evaluate attention
scores—placing a bound on achievable speedups.

4 LongSight: Algorithm-System Codesign for
Large-Context Attention

To overcome the limitations of existing software- and hardware-
based approaches to large-context attention, we propose LongSight.
LongSight co-designs the attention algorithm in transformer-based
LLMs alongside the system and hardware architecture to enable
arbitrarily large-context attention—without compromising the com-
posability or programmability of existing GPU-based ML frame-
works. LongSight introduces a sparse attention algorithm based on
the observation that transformers primarily attend to prior tokens
whose corresponding Key vectors exhibit high dot-product similar-
ity with the current Query vector [12]. At a high level, LongSight
treats the KV cache as a vector database, accessed via top-k dot-
product similarity queries to retrieve only the most semantically
relevant Keys—instead of attending to the full KV cache history.

This vector database, however, differs significantly from conven-
tional vector databases in several key aspects:

1. Granularity and scale: It maintains independent databases
for each KV head, layer, and user. For example, in Llama-3-8B
(which has 8 KV heads and 32 decoder layers), this results in 256

Derrick Quinn, E. Ezgi Yicel, Jinkwon Kim, José F. Martinez, and Mohammad Alian

independent databases per user. With more users, this number
scales linearly.

2. Access rate: The database is accessed at a rate of TPS X L X
H x U, where TPS is the token generation rate, L is the number of
decoder layers, H is the number of attention heads, and U is the
number of users in the batch. For Llama-3-8B running on optimized
systems, TPS can reach several hundred tokens per second even
for moderate batch sizes—translating to hundreds of thousands of
vector database queries per second.

3. Latency sensitivity: These vector database accesses lie on
the critical path of token generation due to the autoregressive and
sequential nature of transformer-based models. For a generation
rate of 100 tokens per second with a single-user batch and 32 layers,
the latency budget for attention in each layer is on the order of a
few hundred microseconds. We refer to this latency budget as the
Service Level Objective (SLO) of attention requests.

4. Dynamic updates: Unlike conventional vector databases,
which are often static or slow-changing, this vector database is
frequently updated. During the Prefill stage, the entire database is
initialized. In the decode stage, a new Key-Value pair is added for
each token generated per user—resulting in high update rates.

Current approaches fail to meet the above requirements. Tra-
ditional vector databases typically use either exhaustive nearest
neighbor search (ENNS) or approximate nearest neighbor search
(ANNS) to retrieve the top-k most similar vectors. ENNS is pro-
hibitively slow and violates the SLO of attention requests. In fact,
dense attention is equivalent to performing ENNS over the entire
KV cache, making ENNS-based LongSight operation regressive.

Clustering-based and Graph-based ANNS, while fast, incur sig-
nificant overhead for index construction and maintenance. Every
time a new vector is added, the index must be updated—a process
that is costly and time-consuming. This is why prior work can only
support a fixed long context that is reused with ANNS [12].

To enable accurate and high-performance sparse attention at
large context scales, LongSight enables an NPU (e.g., GPU) to store
the KV cache of the users on a separate compute-enabled memory
device and offload the bulk of attention computation to the compute-
enabled memory device. LongSight builds on three key ideas:

Idea 1: Multi-stage, in- and near-memory filtering and retrieval. The
first idea is to move away from traditional ANNS methods that rely
on pre-processed indices and instead adopt a hierarchical filtering
mechanism pioneered by DReX [34], which provides the accuracy
of ENNS with the speed of ANNS in multiple stages:

Stage 1 involves in-memory filtering. All quantized Key vectors
are laid out in DRAM to allow efficient access by Processing-In-
Memory (PIM) units (Figure 2b (2)’). PIM units rapidly compute
the similarity between the quantized query and keys. We use one-
bit quantization of key vector dimensions based on the sign bit of
their full-precision data representations (§5). A relaxed threshold
is used to filter out distant keys while ensuring that no semanti-
cally relevant key is filtered out. This dramatically simplifies stor-
age and eliminates the need for complex indexing. This enables
low-overhead, on-the-fly filtering and high update rates. Moreover,
unlike other processing-in-memory approaches that support only
a limited set of data types, in-memory filtering is compatible with
any signed data type.

LongSight: Compute-Enabled Memory to Accelerate Large-Context LLMs via Sparse Attention MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

GPU GPU @ Send DReX
HBM HBM V & K & SK Bk PIM |
an PIM Filterin
11V2[V3[V4| V5[Ve Vo IVaIV. Vs Vel ViIV,1V3V Uni &
—) 1 2 3 4 NAAA
11Ky [K3[Kg [Ks [Kg 1K < [Ks [Kg] @SendO Ky K, [K31K, x 7<3<
‘_’M’ SK1/SK3[SK3[SK,) @ Filtering
SMs SMs o C —NMA _
@ Dense QKT @ Dense QKT within window Top-k Unit | [Sim. Score Unit
G @ - 7

Step 1. Dense QKT for all tokens

Step 1. GPU : Dense QK™ within Window / DReX : Filtering

GPU GPU DReX
HBM HBM PIM
Bank PIM Filtering
11V V3] V4| V5[Vg ViIV,IV3IV, Unit
wVununuv
— SIS ~RERA
SMs SMs __NMA '
Dense SV (2 Softmax (@ Hybrid sv | | (&) Softmax @o;el?d Top-k Unit | [Sim. Score Unit
[Sel x [Se] x QK & V o . & |
@ Ranking @ Scoring

Step 2. Softmax & Dense SV

(a) Conventional GPU-only serving

Step 2. GPU : Softmax & Hybrid SV / DReX : Scoring & Ranking

(b) GPU + DReX collaborative hybrid attention

Figure 2: Overview of LongSight.

Stage 2 involves near-memory top-k retrieval. Vectors that pass
the Stage-1 filter are forwarded to near-memory accelerators, which
perform an exhaustive full-precision dot-product similarity search
to identify the most relevant Keys and Values (Figure 2b 3), @). The
resulting top-k set is then returned to the GPU for final attention
computation (Figure 2b (3)).

Idea 2: Leveraging CXL for fine-grain GPU access. This multi-stage in-
and near-memory filtering inside DReX satisfies high-bandwidth,
low-latency, and high-accuracy requirements. To support fine-grain
access, DReX uses CXL to expose both its internal memory and
Memory-Mapped I/O (MMIO) registers directly into the GPU ad-
dress space. Modern GPU APIs support this via mechanisms such
as SCADA [24], allowing the GPU to access remote memory using
standard load/store instructions.

Idea 3: Hybrid dense and sparse attention. Because LongSight re-
quires frequent updates to per-head, per-layer, and per-user KV
databases during generation, we implement a hybrid dense-sparse
attention strategy. The GPU retains a sliding window of the W
most recent KV pairs in its HBM and performs dense attention over
this window in parallel with sparse attention offloaded to DReX
(Figure 2b @), @’, @, @). Once DReX returns its top-k results,
GPU performs softmax over the combined set of dense and sparse
OKT (Figure 2b (3), ®). Subsequently, the recent V vectors are
loaded from HBM and combined with the received top-k V vectors
retrieved from DReX. Then, a hybrid dense-sparse SV attention is
applied (Figure 2b (7).

This hybrid design offers two benefits: (1) Tokens that are tem-
porally close are often the most relevant, so dense attention over
recent tokens improves accuracy; (2) The window serves as a stag-
ing buffer to batch KV updates to DReX, removing them from the
inference-time critical path.

In the following sections, we present the three subparts of LongSight:

algorithm design (§5), system integration (§6), and hardware archi-
tecture (§7).

5 LongSight Algorithm Design

In this section, we present the algorithmic design of LongSight,
which enables hybrid dense-sparse attention by offloading to a
separate device. We explain Sign-Concordance Filtering [34], a
one-bit quantized filtering scheme tailored to the capabilities of
PIM, and discuss how SCF enables high-performance filtering as
part of a multi-stage Key-Value (KV) retrieval pipeline. LongSight’s
sparse attention algorithm operates in three stages: (1) filtering,
which excludes prior tokens’ keys based on the number of signs
that match a new query (2) scoring, which computes attention
scores via dot-product for included keys; and (3) ranking, which
selects the top-k attention scores—a process mirroring retrieval
from a vector database.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

5.1 Overview

LongSight computes up to k! attention scores per KV head, where
k is a tunable parameter. Each KV head is handled independently.
First, we apply per-token filtering based on quantized approxima-
tions of similarity between queries and keys, producing a sparse
mask. Next, full-precision attention is computed over the surviving
tokens, and the Top-k results are retained for each head.
Filtering: LongSight leverages Sign Concordance Filtering (SCF) [34],
which is a threshold-based filtering with quantized queries and keys.
Specifically, SCF evaluate whether a query vector Q and a key vec-
tor K, each of dimension D, share enough matching sign bits to
exceed a similarity threshold TH:

SCF(Q, K, TH) = (TH <D-3P (soli] ® SK[i]))
where SQ[i] and SK[i] are the sign bits of the ith dimensions of Q
and K respectively, and @ denotes XOR. This expression counts the
number of dimensions where the sign bits match; keys are retained
only if this count exceeds the threshold. Within LongSight, it is
feasible to set each threshold value at many different granularities
(e.g., setting a single threshold value for all Q heads, KV heads,
or layers). Since each attention head has a distinct distribution of
scores, fine-grained thresholding (i.e., setting a threshold for each Q
head) has the potential to be more expressive than coarser-grained
thresholding. Nonetheless, we found that assigning a threshold to
each Query head introduced instability in our threshold tuning
algorithm (§8.1.3). Instead, we assign a threshold to each KV head,
which provides effective and stable filtering performance.

SCF is applied independently per query token, rather than in
blocks. This per-token filtering improves quality and is a good fit
for processing in memory acceleration (§7).

Attention Scores: After filtering, attention scores are computed
via full-precision dot-products between queries and the remaining
keys.

Top-k Retrieval: LongSight applies a Top-k reduction over the
attention scores to select the most relevant Value vectors. This
step reduces the number of Value vectors loaded back to the GPU,
enabling the GPU to implement very large-context lengths with a
limited memory space.

Remaining Operations: Offloading the remainder of attention
(i.e., softmax over dot-products, accumulation of value vectors) to
a standalone accelerator limits our ability to incorporate dense
attention masks on the GPU. Therefore, the remaining operations
(softmax, weighted sum, and linear layers) are executed on the GPU
using conventional methods and are not core to our algorithm.

5.2 Baseline Algorithm Results

To evaluate the effectiveness of LongSight’s algorithm, we imple-
ment a software prototype on a CPU-GPU system. As a baseline,
we use the raw sign bits from unmodified Key and Query vectors
for SCF.

Figure 3a shows the KV cache filter ratio (the ratio of the total
number of KV entries accessed during the dense attention baseline
to the number of Keys accessed after filtering and k Keys and Values

!In this paper, we use lowercase k to refer to the number of top Key/Value vectors,
and uppercase K to refer to Key vectors.

Derrick Quinn, E. Ezgi Yicel, Jinkwon Kim, José F. Martinez, and Mohammad Alian

retrieved after Top-k selection). We evaluate the algorithm using
k =128 and k = 1,024, and match the model quality to be similar
to dense attention, as determined by perplexity, which measures
how well a model predicts the next token.

As shown in Figure 3a, the baseline sparse algorithm struggles to
match the perplexity of dense attention for long-context sequences
when k = 128. This is because limiting the number of attended
tokens to k restricts access to useful context, regardless of filtering
effectiveness.

5.3 Hybrid Short/Long-Range Attention

We next enhance our baseline sparse attention algorithm with short-
range sliding-window attention, forming a hybrid attention strategy.
Hybrid attention performs dense attention on the W most recent
tokens (we set W = 1,024) and sparse attention on the remainder
of the context.

As shown in Figure 3b, this hybrid approach improves robustness
at long context lengths even with smaller k. Additionally, hybrid
attention improves the KV cache filter ratio by up to 39% and 7% for
Llama-3-1B and Llama-3-8B, respectively. This is because the use of
a dense sliding window in hybrid attention reduces the burden on
the sparse attention phase to capture relevant tokens. As a result,
the threshold for SCF can be set to a higher value, leading to a
higher filter ratio.

5.4 ITQ-Enhanced Sparse Attention

The effectiveness of SCF assumes that vectors are uniformly dis-
tributed around the origin. In practice, KV representations in LLaMA
models exhibit strong clustering, which reduces filter efficiency.

To address this, we apply Iterative Quantization (ITQ) [7]—a tech-
nique that learns a rotation matrix to minimize quantization error.
ITQ is applied to both Keys and Queries, improving the balance of
sign-bit distributions and thereby increasing filtering efficacy.

We train an ITQ rotation matrix for each KV head using a 1K-
token sequence of post-embedding Key and Query vectors. Since
positional embeddings break distance invariance, ITQ cannot be
fused into the linear projection layers and must be applied at run-
time. Nevertheless, the improvements provided by ITQ far out-
weigh this minor runtime overhead. Moreover, the one-time ITQ
tuning is fast, taking under a minute for Llama-3-8B and requires
no task-specific data. At inference time, after the queries & keys
are projected and positional embeddings are applied, each query
and key is multiplied by the ITQ-tuned [Dy, X Dj,] matrix, where
Dy, is the Query/Key head dimension.

As shown in Figure 3c, ITQ significantly improves filtering: the
KV cache filter ratio improves by up to 6.4X for Llama-3-1B and
46x for Llama-3-8B, compared to hybrid attention alone. The run-
time computational overhead of ITQ is less than 3% of the cost
of computing query vectors (and less than 0.5% of the average
cost of an inference request for Llama-3-1B), which is negligible
compared to the significant improvements it provides for effective
sign-concordance filtering.

Sensitivity Analysis. To illuminate trade-offs, Figure 4 shows the
relationship between overall filter ratio and accuracy (in terms of
inverse perplexity), relative to dense attention at a specific context
length. As shown, large window sizes of greater than 1,024 tokens

LongSight: Compute-Enabled Memory to Accelerate Large-Context LLMs via Sparse Attention

mk<128 Ok<1024
100x

Bk <128 Ok=<1024

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Bk<128 Ok=<1024

100% Tamas-18 Llama-3-1B 100 Tfama3-18
10% 10x 1 10
k] 2 el
T © T 1x
x x XXXxxXXXxexxxxxx o I
3 g NYROHIEITCONIE & TEOHIY
ic [- - i -
-3 (0] -3
% 100% Llama-3-8B £ 100x Llama-3-8B % 100 |
@ @ ©
(&) o o
< < >
10 10 10x
1x 1%
Tokens Tokens: Tokens:

Dataset

(a) Sparse only, no ITQ

Dataset

(b) Hybrid, no ITQ

Dataset

(c) Hybrid, ITQ

Figure 3: Non-window KV Cache filter ratios for LongSight. Sparse attention includes a sign-based filtering phase for keys, then
k values are selected based on scores. “Hybrid" configurations combine sparse attention with dense sliding-window attention
(1024 tokens). Perplexity is within 5% of full dense attention. Some configurations with small k could not reach the perplexity

target and are marked with ‘X’

_ WS=4096
k=1024

WS=1024
k=128

WS=1024
k=1024

— All Configs
100%
99% 4
98% 4
97% A
96% -
95% T

100%
99% 4
98% 4
97% A
96% -
95% T

Llama-3-1B
Wiki2

Llama-3-1B

Accuracy (Inverse-perplexity, % Of Dense)

1% 10% 100x 1% 10x 100x%

100% 100% - O 288
T Llama-3-8B | ..., | T = lama-3-

99% A 99% A Wiki2
98% 4 98% -
97% 4 97% A
96% -1 96% A
95% T 95% T

1% 10x% 100x 1x 10x% 100x

Overall KV Cache Filter Ratio

Figure 4: Accuracy vs. KV Cache filter ratio pareto frontiers
for LongSight’s Hybrid, ITQ-enhanced sparse attention algo-
rithm at 32K context length. On the X axis, 10x (100x) means
a 10:1 (100:1) raw:filtered ratio. Three example configura-
tions are shown, as well as “All Configs" which represents
the pareto frontier across all configurations tested.

tend to be useful only at the highest accuracy targets (see sec-
tion 8.1.3 for more details). Conversely, k significantly smaller than
1,024 only provides an advantage for the lowest accuracy targets,
and not in all configurations. In general, we found that window size
and k both set to 1,024 reliably achieved a wide range of accuracy
targets while maintaining reasonably effective filtering.

DynaX [42] reports an average sparsity of 91.77% with a 1% per-
plexity increase when emulating long-context datasets, including
concatenated Wiki2 docs, using Llama-3-8B. In our testing of this

exact setup, we achieve up to 91.92% sparsity (a KV Cache filter
ratio of 12.4X) with the same perplexity increase. Thus, LongSight’s
sparse attention is algorithmically competitive with state-of-the-art
methods.

6 System Integration

Figure 2 compares the high-level execution model of conventional
GPU-only attention with that of LongSight. LongSight enables the
GPU to collaborate with DReX over a low-latency CXL interface,
offloading the memory-intensive phase of sparse attention to DReX.
As illustrated in Figure 5, DReX is a Type-3 CXL device, with its
entire internal DRAM capacity mapped into the host address space.
As a result, LongSight allows the GPU to directly access DReX’s
internal memory, executing load/store instructions to interact with
DReX’s memory space [24]. This design enables the GPU—without
CPU involvement—to populate DReX with Keys and Values and
submit sparse attention requests at the granularity of attention
heads, layers, and users.

A key design decision in LongSight is the implementation of
hybrid dense and sparse attention. Specifically, the GPU retains
a window of the most recent Keys and Values in GPU HBM and
resorts to sparse attention via DReX only when the KV size exceeds
a certain threshold. This threshold can either reflect the available
HBM capacity or be user-defined. This design offers three main
benefits: (1) As prior work suggests, dense attention over the most
recent KVs can significantly improve the accuracy of sparse at-
tention [2]. (2) Utilizing available HBM avoids underutilization,
improving overall memory efficiency. (3) Updating DReX in bulk—
by accumulating a group of KV vectors before transfer—reduces
communication overhead compared to sending one KV vector per

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

generated token. Therefore, by retaining a window of newly gener-
ated KV vectors on the GPU and performing dense attention locally
while updating DReX off the critical path, LongSight improves both
accuracy and throughput.

Figure 2b illustrates the operation of LongSight’s hybrid atten-
tion mechanism operation. It operates as follows: During the Prefill
stage, the GPU accumulates KV tensors in HBM. Once the user-
defined threshold is reached, the GPU prepares Key Sign Objects,
Key Objects, and Value Objects for groups of 128 Keys and Values,
and writes them to DReX. Object preparation and transfer are han-
dled by separate GPU kernels that execute off the critical path of
the Prefill stage.(Details of the object formats and their physical
layout in DReX DRAM are discussed in section 7.3.)

After the first token is generated (i.e., at the end of the Prefill
stage), LongSight establishes a dense attention window in GPU
HBM using the most recent Keys and Values, and a sparse attention
window in DReX (assuming a sufficiently large input context). In
the autoregressive decode stage, at the beginning of each attention
layer, LongSight constructs a Request Descriptor (§7.3) on the GPU
for each user in the batch and writes it into an MMIO Request
Queue on DReX. After submitting the offload request to DReX, the
GPU performs dense attention using the local window in HBM.
Once the dense phase is complete, the GPU enters a polling phase,
periodically checking for the completion of the sparse attention on
DReX. Upon receiving the top-k QKT and Values from DReX, the
GPU performs the Softmax and projection steps and proceeds to
the feed-forward network and subsequent decoder layer.

7 Architecture

7.1 Overview

LongSight repurposes DReX [34], which is a compute-enabled CXL
memory expander originally designed for accelerating dense re-
trieval, to accelerate attention. In this section, we discuss the overall
architecture of DReX and the extensions that enable it to accelerate
LongSight’s sparse attention algorithm.

Figure 5 illustrates the overall architecture of DReX. DReX in-
tegrates PIM Filtering Units (PFUs) near each LPDDR bank and
places a Near-Memory Accelerator (NMA) chip adjacent to each
LPDDR package. The system comprises eight LPDDR5X packages,
each with eight channels, and each channel includes 128 banks, im-
plemented as four dies with 32 banks per die [31]. As a result, DReX
includes 8 X 8 X 128 = 1,024 PFUs and eight NMAs and implements
512GB of LPDDR capacity. For efficient sparse attention offloads,
LongSight extends DReX’s CXL Controller (DCC) to orchestrate
sparse attention offload to the NMAs (§7.2).

LongSight offload model is as follows. At a high level, the GPU
submits attention request descriptors to DCC, which maintains a
request queue. DCC pulls descriptors from the head of the queue
and, based on the address mapping (§7.3), assigns partial sparse
attention workloads to NMAs. Each NMA handles sparse attention
for a single user, a single layer, and a single attention head at a
time. Depending on the size of the KV cache, multiple or all NMAs
can work in parallel on a single attention request. This is because
batching across users or heads does not yield reuse benefits due to
the lack of shared KV cache data.

Derrick Quinn, E. Ezgi Yicel, Jinkwon Kim, José F. Martinez, and Mohammad Alian

During the execution of a sparse attention request on an NMA,
the NMA offloads the filtering stage to in-DRAM PFUs and performs
the scoring and ranking on the near-DRAM, NMA chip. Each PFU
operates on 128-bit inputs per cycle, aligned with the 128-bit-wide
on-chip interconnect between Local and Global Row Buffers in
LPDDR5X banks. The PFU filters distant Keys relative to Queries,
reducing the need for full dot-product evaluation. However, PFUs
are only effective if their local DRAM bank contains a sufficiently
large population of Keys; otherwise, the filtering ratio becomes too
small to be beneficial. To ensure high utility, each PFU processes
blocks of 128 Keys and supports attention groups of up to 16 Queries.
That is, in each offload, a PFU filters 128 Keys for a batch of 16
Queries.

The PFU’s block-based design implies a specific data layout and
offload scheduling strategy, which we elaborate on in section 7.3.

7.2 DReX CXL Controller (DCC) Extensions

For efficient orchestration of sparse attention offloads to NMAs,
LongSight makes some extensions to the DReX CXL Controller
(DCC). The baseline DCC implements a lightweight, low-latency
interface enabling any programmable NPU (e.g., GPU) to interact
with DReX. LongSight extends DCC with several MMIO registers:
a single Polling Register (512 bits), a hardware-managed Request
Queue, and 512 individual Response Buffers, each sized to accommo-
date the maximum Response Descriptor (section 7.3).

Request Descriptors written by the GPU are pushed into the
Request Queue MMIO register, similar in spirit to Intel’s Accelerator
Interfacing Architecture (AiA) [45]. The descriptors are processed
in FIFO order. Since generation is sequential and a user’s sparse
attention must complete before their next request, DCC maintains
a queue depth equal to the maximum supported batch size. DCC
supports a queue depth of 512, corresponding to a batch size of 512
users.

LongSight, as detailed in section 5, implements a hierarchical
offload mechanism. DCC is responsible for interfacing with the
GPU, preparing offload workloads, and distributing them to one
or more NMAs for computation. Each NMA includes control logic
that interprets physical addresses local to its package to initiate
filtering, read filtering metadata from PFUs, and iteratively evaluate
a partial top-k (maximum supported k in hardware is 1,024) list of
Keys and Values. We describe the NMA controller in more detail in
section 7.4.

DCC polls for the completion of NMA workloads and aggregates
the resulting partial top-k lists. Once an offload completes, DCC pop-
ulates a corresponding Response Buffer indexed to the user. To man-
age these buffers, DCC maintains a mapping table—implemented as
a content-addressable memory (CAM)—that associates each User
ID with a specific Response Buffer and Polling Register entry. The
GPU reads this mapping once and uses it throughout the generation
phase across all layers and autoregressive iterations.

7.3 Data Layout

7.3.1 Memory Allocation. LongSight allocates DReX memory at
the granularity of the following objects:

o Key Sign Object: Contains one-bit, sign-quantized Key vectors
per user, layer, and attention head.

LongSight: Compute-Enabled Memory to Accelerate Large-Context LLMs via Sparse Attention

HOST

DReX CXL AGU
CONTROLLER (DCC) Query Address cho
To SPM SPM MCO |
ICHO CH7 exL .
[¢47] cTRL MU Similarity
g ; Score Unit
& & I
a | "t [=} Controller AGU
o [a) - | i
2 g Unit ‘ Top-K Unit ‘ MC7 157
CHo |
Col0 Col 63
Bank Bank HET o . 9
...... C ()——Subarray0 """y
0 127 g [. . Bitline Sense Amplifier : 2?‘13
PFU PFU JIo—o0———g:
| |O—CO—Suvamay(n) ()
o7 | *
Bank Bank \ 10 Sense Amplifier (128b)
0 | == 127 260
‘ XOR | [Accumulator | [BITMAP |
PFU EED Unit | | CTRL \

Figure 5: Overall architecture of DReX, reproduced from [34].
LongSight extends DReX’s "CXL Controller” to efficiently
accelerate sparse attention.

o Key Object: Contains Key vectors in full-precision formats.

e Value Object: Contains Value vectors for each layer and head.

e Request Descriptor: Contains the User ID (UID), layer number
(L), and Query vectors.

o Response Descriptor: Contains a list of 1,024 X H top Keys and
Values, where H is the number of heads.

7.3.2 Address Translation. While the GPU can write directly to
DReX memory, the placement of Key vectors must adhere to DReX’s
strict physical layout constraints. These constraints are governed
by a deterministic hashing function that maps data to specific pack-
ages, channels, banks, and rows. DReX employs a simple physical
address mapping scheme in which contiguous physical addresses
are first mapped to columns, then rows, followed by banks, chan-
nels, and finally packages. This mapping simplifies the translation
from GPU addresses to the physical locations in DReX DRAM. To
maximize memory bandwidth utilization during the near-memory
top-k retrieval stage, LongSight explicitly distributes Key vectors
across multiple memory channels. Rather than allocating Key Ob-
jects as contiguous blocks in physical memory, LongSight scatters
them across strided physical addresses. This strided placement en-
sures that when Key vectors are accessed during near-memory
computation, the bandwidth of all LPDDR5X channels is effectively
utilized.

7.3.3 Object Data Layout. The logical mapping of users, layers,
and attention heads into DReX plays a critical role in performance.
During attention, parallelism can be exploited across tokens within
a single head, across KV heads, and across users. But this paral-
lelism cannot be achieved by batching, as each of the attention
requests operates on disjoint Keys. Figure 6 illustrates the logical
hierarchy used to map multi-user context data to DReX, which
enables multiple forms of parallelism: within a head (via DRAM
banks and channels), across heads (via packages), and across users
(via multi-tenancy).

Key Blocks: A Key Block comprises several rows within a DRAM
bank and contains both the Key Objects (full-precision Key vectors)

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

and the Key Sign Objects (one-bit quantized sign bits of each dimen-
sion for 128 Keys). Each Key Sign Object must be fully contained
within a single DRAM bank. Because PFUs operate on 128 Keys
per cycle, each DRAM column access must retrieve one bit from
the same dimension across 128 Keys. Therefore, sign bits are stored
such that each 128-bit column represents a single dimension across
all 128 Key vectors.

The full-precision Key vectors are used by the NMA for dot-
product similarity calculations during Top-k selection. Since NMAs
have access to all banks within a package, these Keys do not need
to be bank-local. LongSight interleaves each Key vector across
all eight memory channels within a package to ensure balanced
channel utilization. This interleaving is essential: if surviving Keys
after filtering are accessed from only one memory channel, the
result would be bandwidth imbalance and NMA stalls. Distribut-
ing the Keys across channels enables the NMAs to fully exploit
the LPDDR5X bandwidth during sparse dot-product and Top-k
operations.

Figure 6a shows the mapping of Key Objects and Key Sign Ob-

jects into Key Blocks for Bank 0 across all channels in a package.
Since each Key Block contains 128 Keys per bank and each package
includes 8 channels, the minimum size of a group of Key Blocks is
128 X 8 = 1,024 Keys.
Context Slices: A Context Slice is composed of one or more sets of
Key Blocks, each allocated to a distinct bank in all channels within
a package. Context Slices serve as the natural storage unit for the
Keys corresponding to one head within one layer for a single user.
Given that each channel includes 128 banks, a Context Slice can
store up to 1,024 X 128 = 131,072 Keys when fully utilizing every
bank.

While NMAs cannot process multiple Context Slices in parallel,
filtering across banks can still proceed in parallel within a single
Context Slice. However, if a Context Slice occupies fewer than 128
banks, this reduces bank-level filtering parallelism. As shown in
Section 9, filtering is typically not the bottleneck, so this limita-
tion has minimal performance impact. Context Slices also simplify
address generation: since their location is deterministic, the NMA
can launch PFUs in parallel across all banks that the Context Slice
spans.

Multi-Layer Context Slices: Figure 6b illustrates a Multi-Layer
Context Slice, which concatenates multiple Context Slices sequen-
tially. Since transformer layers must be processed sequentially,
Multi-Layer Context Slices are ideal for storing the Keys associated
with the same head across multiple layers.

User Partitions: Figure 6¢c shows a User Partition, which is formed
by aggregating multiple Multi-Layer Context Slices—one per KV
head—for a given user. User Partitions exploit head-level parallelism
by storing each Multi-Layer Context Slice in a different package.
The number of packages required for a User Partition is:

— L
Packages = hy,, - 1072

where hy,, is the number of KV heads, L is the total context length
(in tokens), and 131,072 is the maximum capacity of a full Context
Slice.

Partition Mapping: Figure 6d shows several User Partitions mapped
across the DReX memory. These partitions support both spatial

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Bank 0

K[0,0:7] | K[1,0:7]
K64,0:7] | K[65,0:7]

K[63,0:7]
K[127,0:7]

Interleaved Dims:
K[128:255, 56:63]

i

KS[0:127,2:62]

(ch.o) (ch.1
Bank 0 Bank 0O
KSO[0] KSO[1]

Entire Package: Bank 0

(2)

Derrick Quinn, E. Ezgi Yicel, Jinkwon Kim, José F. Martinez, and Mohammad Alian

Package 0, All Channels

Bank 0

64K Context Slice:
Layer 0, Head 0

64K Context Slice:
Layer 1, Head 0

64K Context Slice:
Layer 31, Head 0

64K Multi-Layer
Context Slice

(b)

Package0O |{ | . DReX
e, s Package 0-3
64K MLCS: Head 1
Head 0 64K User Partition
User 1, 0-64K
Package 1
" Bank 0-63 | {Bank 64-127" 64K User Partition
User 3, 0-64K
Head 2 Head 3
Pa_fk"fge 2 i Package 4-7
Bank 64-127}
Head 5 64K User Partition
d User 2, 0-64K
Package 3
" " 64K User Partition
Bank 0-63 | iBank 64-127 User 1, 64-128K
Head 6 Head 7

(© (d)

Figure 6: LongSight logical hierarchy of data mapping in DReX.

multi-tenancy (across users) and temporal expansion (across a sin-
gle user’s long context). In the latter case, a user’s context may
span multiple User Partitions, each of which receives the same
queries but attends to a different segment of the context. Therefore,
LongSight does not statically allocate equal context lengths to all
users.

7.4 NMA Controller

LongSight leverages each NMA in DReX to process, at any given
time, attention for a single attention head, a single layer, and a
single user. This design choice stems from the insight that batching
filtering or top-k retrieval across multiple attention heads or users
offers no benefit in terms of data reuse. While parallel execution of
multiple heads or users on a single NMA is theoretically possible,
we chose not to pursue this direction due to its complexity and
limited performance gain.

DCC submits attention requests to NMAs sequentially, based on
the physical location of the Key vectors involved in each request
(§7.3). Upon receiving a request, the NMA enters a state machine
that alternates between in-memory filtering and near-memory sim-
ilarity score evaluation until all relevant Key vectors are processed.

Filtering is executed in multiple epochs, with each epoch pro-
cessing 128 Key vectors in parallel per bank—amounting to up to
1,024 x 128 Key vectors per LPDDR5X package in each epoch. Dur-
ing each epoch, the PFU generates a 128-bit bitmap that is read by
NMA, where each bit corresponds to one of the 128 vectors. PFUs
are synchronously controlled by the memory controllers on each
NMA, an architecture similar to HBM-PIM [16]. A bit is set to 1 if
the corresponding Key vector passes the sign-concurrence filtering
threshold. The NMA controller maintains metadata to map each
bitmap back to its corresponding Key vector.

Each Key vector is identified by a 32-bit ID address that encodes
three components: the 7 least significant bits represent the bank
index (out of 128 banks per channel); the next 7 bits represent the
vector’s index within the 128-bit bitmap; and the 18 most significant
bits encode the epoch number during which the Key was filtered.

During the near-memory similarity score evaluation phase, the
NMA fetches the filtered Key vectors one by one from memory. It

Model Llama-3-1B Llama-3-8B [38]
Attention GOQA [1] GQA [1]
Query/KV heads 32/8 32/8
Head Dim. 64 128
Layers 16 32
Quantization BF16 BF16

Table 1: Model parameters.

Device | Description

16 X Intel Xeon Max 9462@3.5 GHz, SMT off
CPU | 8 x 128 GB DDR5-4400 DRAM

3.5 TFlop/s, 282 GB/s

NVIDIA H100 SXM (2,958 TF/s)

GPU | 80 GB HBM3 (3.35TB/s)

989 TFlop/s, 3.35 TB/s

8 Xx NMA , 8,192 x PFU

512 GB LPDDR5X

26.11 TFlop/s, 1.1 TB/s (NMAs), 104.9 TB/s (PFUs)

Table 2: System configuration used for measurements.

DReX
(Simulated)

uses addresses stored in the Address Scratchpad Memory (SPM)
and reads data across all eight LPDDR5X memory channels. As de-
scribed in section 7.3, the full-precision Key vectors are interleaved
across the channels to maximize parallel access and fully saturate
the memory bandwidth of the LPDDR5X package.

8 Methodology

8.1 Evaluating the Hybrid Attention Algorithm

8.1.1 Datasets and Perplexity. While downstream tasks such as
summarization or long-document question answering provide in-
sight into application-level accuracy, these benchmarks often oper-
ate on datasets with fixed or limited context lengths. This makes it
difficult to systematically evaluate the effect of increasing context
length on model capabilities. Furthermore, success on these tasks
does not necessarily imply that the model effectively utilizes the
entire context.

LongSight: Compute-Enabled Memory to Accelerate Large-Context LLMs via Sparse Attention

To directly evaluate long-range modeling as context length in-
creases, we use perplexity as our primary metric. As an intrinsic
measure, perplexity quantifies the model’s ability to predict the
next token given prior context. Perplexity can be computed over ar-
bitrarily long contiguous sequences, making it suitable for studying
how well models utilize extended context windows.

Many common benchmarks lack the long, contiguous text se-
quences necessary for this analysis. To address this, we use the
Project Gutenberg (denoted PG) corpus [33], selecting complete
books that significantly exceed the maximum context lengths of
the models under evaluation. We segment these texts into token
sequences of the target context length, yielding natural, long-form
input for evaluation. For comparability to prior work, we also use
the Wikitext2 dataset (denoted Wiki2), though its passages are far
shorter than that of Project Gutenberg. Thus, for long context ex-
periments, we follow prior works and concatenate Wiki2 passages
as needed [13, 32].

8.1.2 Setup. We initialize the Llama-3-1B and Llama-3-8B models
using the HuggingFace transformers library. Our hybrid attention
mechanism is implemented as a PyTorch module named LongSigh-
tAttn, which replaces the default attention layers. LongSightAttn
is parameterized by ITQ tensors containing the learned rotation
matrices and accepts as input: (1) a threshold tensor (one value per
KV head), (2) a top-k value k, and (3) a dense window size W for
hybrid attention. LLM inference can be broken down in terms of
prefill and decoding. Prior works [25] have shown that prefill has
hundreds of times higher throughput than decoding; as a result,
the decode phase tends to dominate end-to-end runtime. Prefill
can have a noticeable impact if input sequences are much longer
than output sequences, e.g., if a long-context KV cache must be
reconstructed; however, such cases are highly application-specific.
In our evaluation, we only consider the throughput and latency of
the decoding phase, as LongSight does not impact the performance
of the prefill phase.

8.1.3 Hyperparameter Tuning. In this subsection, we discuss our
methodology for tuning the hyperparameters in LongSight.

Attention sink tokens: We use a small number of early tokens
to serve as an “attention sink", after observing that the Llama-3
models attended heavily to early tokens. This observation corrob-
orates prior work [41], and is model-specific technique; indeed,
newer models that incorporate trained biases in the softmax de-
nominator [27] may not need to include any attention sink tokens.
These tokens are meant to provide stability rather than relevant
context, so the number of attention sink tokens can be small. In
fact, we found that even a single attention sink token can dra-
matically improve stability. Since attention sink tokens are largely
unrelated LongSight’s sparse attention, we configured the number
of sink tokens using sliding-window attention alone. Similarly to
StreamingLLM [41], we found small stability improvements when
using more than one token as the attention sink. To eliminate any
risk of instability, we used 16 tokens.

Sliding window size: Sliding-window attention captures highly
relevant recent tokens and can even improve robustness at long
contexts as shown in Figure 3b. Moreover, Sliding-window attention
is dense and can be computed directly on the GPU, overlapping

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

with a DReX offload. As discussed in section 9.2, the system-level
bottleneck shifts from the GPU to DReX as the number of users
increases. Therefore, the optimal strategy for sliding window size
differs depending on the overall system load for LongSight. When
there are many users, DReX becomes the bottleneck, so a useful
heuristic is to simply use the largest possible window size based
on the GPU capacity and a target batch size. However, with few
users, it is likely that the GPU will be the end-to-end bottleneck,
in which case it is useful to set sliding window size based on a
per-token latency target. For simplicity and consistency, we use a
sliding window with 1,024 tokens unless stated otherwise.

Top-k: The Top-k stage sets the upper bound for quality in the
long-context quality-speed trade-off space, eliminating nearly half
of long-context KV accesses even without SCF. Therefore, a simple
strategy is to set k to be the maximum possible, 1,024. However,
CXL transfers of the k values can readily bottleneck end-to-end
LongSight inference if both k and filter ratio are high. Therefore,
to find reasonable values for k, we set the thresholds to zero, and
adjust k to increase perplexity by 0.5-1% compared to the base
model. This represents a meaningful perplexity increase, but is still
small enough that SCF thresholds can be configured to achieve a
high filter ratio without violating quality targets.

Thresholds: We initialize all thresholds such that no Keys are
filtered (i.e., filter ratio = 1). We iteratively increase the thresholds
for KV heads with the lowest filtering ratios. This process continues
until the perplexity exceeds a predefined threshold (5%), at which
point we record the filter ratio from the prior iteration. We tune
thresholds using 128K context for Llama-3-1B and 32K context for
Llama-3-8B, which were longest context sizes that could fit in GPU
memory when running the sparse attention implementation.

8.2 Modeling Performance

To evaluate performance, we build an end-to-end simulation frame-

work combining cycle-accurate DRAM modeling with DRAMSim3 [19],

RTL synthesis results (for PFUs and NMAs), and real-system mea-
surements for GPU execution, PCle/CXL transfers, and polling
latency.

We develop RTL models for both PFU and NMA and synthesize
them to extract latency and power consumption figures at the 16 nm
technology node. We then scale PFU results to 7 nm [29, 36]. Since
logic within DRAM dies is known to be approximately 10x less
area-efficient [6], we apply the scaling factor to our area results.
For on-chip buffers such as Query SPM and Address SPM, we use
area and power projections from [5].

We combine RTL timing with LPDDRS specifications from Ramu-
lator [14] to compute latency values, including: Bitmap generation
time in PFU: d X 1.25 ns; Bitmap read latency into NMA: 120.4 ns;
Address generation overhead in memory controller: 1,024 ns. Using
DRAMSim3, we simulate memory traces for loading Keys into the
NMA for similarity score evaluation. RTL synthesis is again used
to estimate time for dot-product computation and Top-k sorting.

We fix the threshold values for the PFU in our models to meet a
perplexity requirement of less than 5% for both PG and Wiki2. This
leads to an average 20X filtering ratio measured form long-context
inference with Llama-3-1B and Llama-3-8B.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Derrick Quinn, E. Ezgi Yicel, Jinkwon Kim, José F. Martinez, and Mohammad Alian

m Throughput - 1x GPU (Dense) B Throughput - 2x GPU (Dense) @ Throughput - AttAcc (Dense) O Throughput - LongSight

®Latency - 1x GPU (Dense) @ Latency - 2x GPU (Dense)

Llama-3-1B
10000

OLatency - AttAcc (Dense)

OLatency - LongSight

1000

1000 4

100

10
Users:

© |
- |®

Total Throughput (Tokens/sec, Log Scale)

o i o

10
Users

32K Context 64K Context

32K Context 64K Context 128K Context 256K Context? 512K Context? 1M Context?
10000 5 1000
Llama-3-8B
1000 100

[) () o : o 2 &
o
iﬂﬂ[H[O IO iO-HO | H (0
1632 6a12a| 1 |2 a |8 6]a2fez|1]2]alslwelar|1]2]alslts|1]a]alr]1]2]a

128K Context

o
[¢]

Latency per token (ms, Log Scale)

o)

256K Context? 512K Context? 1M Context?

Figure 7: Decode-phase throughput (across all users) and per-token latency for 1-GPU systems, 2-GPU systems, AttAcc, and
LongSight and 32K context length. LongSight throughput and latency are averaged across both datasets. Missing entries indicate
that the GPU memory capacity could not fit the context. Entries marked with “*’ indicate deviations from power-of-two scaling,
since DReX has additional overhead for storing sign bits. Context lengths above 128K are marked with ¥, indicating that sparse
attention performance is projected based on performance at 128K context.

Following prior work [18], we emulate the CXL interface using
a dual-socket Intel Xeon (5th Gen) platform to measure overheads
from memory copies and polling. These are incorporated into our
overall system performance model.

GPU Performance: For dense attention, we use HuggingFace
transformers implementations of Llama-3-1B and Llama-3-8B. For
the 2-GPU configuration, we map our algorithm to the GPUs us-
ing data parallelism. Compared to tensor or pipeline parallelism,
data parallelism duplicates model weights but does not introduce
communication overheads [3]. In the worst case, with Llama-3-8B,
this means that each GPU must load an additional 16/2 = 8 GB
of weights (relative to tensor/pipeline-parallel) which is approxi-
mately 10% of HBM capacity. To model integration of DReX with
the GPU pipeline, we replace the native attention layers with a
PyTorch module that performs ITQ transformation, attention over
a sliding window (dense), and integration with top-k results re-
turned from DReX. Because sliding-window attention can overlap
with DReX offload execution, we measure GPU execution time both
with and without the sliding window. Similarly, softmax can start
as soon as DReX offload for that head is complete, so we measure
GPU execution time with and without softmax to isolate its cost.
These measurements are used to compute pipeline overlap and
total inference latency. The final decoding time combines GPU-side
execution with the offload latency obtained from our DReX model.

AttAcc [29]: We integrate Llama-3-1B and Llama-3-8B configura-
tions into AttAcc’s simulator. Since AttAcc is designed for dense
attention, its perplexity is zero. We use a single H100 GPU alongside
bank-level PIM units, with the context length L;, applied consis-
tently across experiments.

Sparse Attention: We compare LongSight against sliding window
attention, commonly used to reduce attention cost [22, 37]. Our
models were not fine-tuned for sliding-window attention; thus, we
follow the approach used in StreamingLLM [41] and include 16
tokens from the beginning of context to serve as an attention sink.

9 Experimental Results

9.1 Inference Acceleration

We compare LLM inference performance for LongSight against 1-
GPU, 2-GPU, and AttAcc [29] setups using Llama-3-1B and Llama-3-
8B, across various context lengths and user counts. Figure 7 shows
LongSight improves total decode-phase throughput and reduces
per-token latency vs. 1-GPU, especially as context length increases.
2-GPU and AttAcc can achieve higher throughput than LongSight
for shorter context lengths, since LongSight has additional over-
heads resulting from moving k value vectors over CXL. Nonetheless,
LongSight achieves superior peak throughput for context lengths
above 128K tokens due to its sparse attention.

The large memory capacity of DReX allows LongSight to sup-
port more concurrent users, expanding the overall utility of the
LLM-serving infrastructure. For both setups, increasing the num-
ber of users leads to higher per-token latency, which can degrade
quality of service. However, the latency increase is substantially
more modest with LongSight, due to its ability to accelerate sparse
attention. As a result, LongSight can maintain latency Service Level
Objectives (SLOs) while increasing system throughput by serving
more users concurrently.

Although LongSight throughput eventually plateaus as the num-
ber of users increases beyond a certain point, the ability to fit

LongSight: Compute-Enabled Memory to Accelerate Large-Context LLMs via Sparse Attention

mCXL-Bound @CXL+DP oDP-Bound @ Setup
100%
75%
50%
25%

0% - —

100%
75% A
50% A
25% A

0% 1

Single-Token Latency Breakdown

Ctx.
Length:
(Tokens)

g

Llama-3-1B

Llama-3-8B

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

for early partitions can be issued in parallel with dot-product com-
putation for later partitions, enabling efficient pipelining of data
movement and compute.

Figure 9 shows a system-level breakdown of LongSight per-
formance across varying workloads. When there are few users,
LongSight is bottlenecked by the GPU, regardless of context length.
As DReX becomes fully utilized, short-context workloads become
bottlenecked by DReX due to the high per-user overhead of Value
loading. However, for longer contexts, fewer users can be served
concurrently, and more DReX resources (PFUs and NMAs) are as-
signed per user. As a result, the DReX offload time does not increase
proportionally with context length. At these longer contexts, the
reduced number of users leads to lower GPU utilization, making

Max. Possible Users

Figure 8: Per-token latency breakdown for DReX.

mDReX-Bound @©Hybrid Attn. 0 GPU-Bound
100%
75% A
50% A
25% A
0% -

One User
100%

75% A

Single-Token Latency Breakdown

(Tokens)

Llama-3.1-8B
Max. Possible Users

Llama-3.2-1

Figure 9: Per-token latency breakdown for LongSight.

user contexts entirely within DReX memory allows the system
to pre-stage Key/Value data, reducing per-user inference cost and
improving GPU utilization.

The benefits of LongSight are especially pronounced at longer
context lengths. At shorter lengths, Value loading dominates latency
and represents a fixed overhead per user. However, DReX offload
time scales sub-linearly with context length, making it more effi-
cient as context grows. At the maximum context length supported
by one GPU, LongSight achieves up to 8.1-9.6x higher throughput
and 3.6-11.9% lower per-token latency.

9.2 DReX and LongSight Latency Breakdowns

Figure 8 presents a breakdown of latency within a single DReX
offload. The top subfigure shows results for a single-user scenario,
while the bottom subfigure illustrates the breakdown when DReX
is fully utilized by multiple users. The maximum number of users
that can be accommodated in DReX per model and context length
is reported in Figure 7.

As shown, for both single-user and multi-user cases, short-context
workloads are primarily bottlenecked by the time required to read
Value vectors over CXL. However, as context length increases, the
relative cost of the dot-product phase grows, while Value loading
remains a fixed per-user overhead. Notably, the CXL-bound Value
loading stage can be effectively overlapped with the dot-product
stage, particularly in high-utilization scenarios. In such cases, where
multiple User Partitions are mapped to each package, Value reads

the GPU the primary end-to-end bottleneck in the system.

100%

-~~~ 8liding Window Only

LongSight

99% +
98% A
97% A
96% -
95%

Llama-3-1B
PG

100%

99% -
98% -
97% A
96% -
95%

Llama-3-1B

Wiki2

1

100%
99% A
98%
97% A
96% -

100% T

99% A
98% A
97% A
96% A

Accuracy (Inverse-perplexity, % Of Dense)
x

95% 95%

16x 32x 1x

Normalized Throughput

Figure 10: Accuracy (rel. to dense attention) vs. normalized
throughput pareto frontier for LongSight and Sliding Win-
dow attention at 32K token context length. Window size, K,
and thresholds for each dataset and model tuned separately
via parameter sweep.

9.3 Comparison with Sliding Window Attention

Figure 10 shows accuracy-throughput Pareto frontiers for LongSight
and a sliding window configuration, both tuned to 32k token con-
text length. These are optimistic, since all parameters are tuned
for a specific context length; the configuration in Figure 7 balances
performance across all context lengths and datasets. In particular,
we use k=256, 512, and 1024 for 32K, 64K, and 128K context, respec-
tively. For longer contexts, we use k=1024. All configurations use
a 1024-token sliding window and 16 attention sink tokens. While
performance is similar for both datasets, Figure 7 shows average
performance across the two datasets. A drawback of LongSight vs.
sliding window is that optimal parameters (i.e., window size, k, and
SCF thresholds) are heavily context-dependent and impact end-to-
end performance. Nonetheless, LongSight achieves a substantial
Pareto expansion with parameter tuning.

9.4 Power and Area Analysis

Because LongSight does not modify the PFU and only slightly in-
crease the SPM size of the NMAs, the area and power profile of DReX
used in this work is similar to what reported in prior work [34].
Each LPDDR5X package in DReX consumes up to 18.7 W at peak

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

power, and the PFUs incur an area overhead of 6.7% relative to the
total DRAM die area. Each NMA, implemented in 16 nm technology,
occupies 15.1 mm? of area and has a peak power consumption of
1.072 W. Consequently, the total peak power of a DReX unit (com-
prising eight PIM-enabled LPDDR5X packages and eight NMAs) is
estimated at 158.2 W. The additional lightweight logic integrated
into the DReX CXL controller introduces negligible area and power
overhead.

10 Conclusion

In this work, we presented LongSight, a system that co-designs al-
gorithm and hardware to enable arbitrarily large context lengths for
transformer-based LLMs. LongSight repurposes DReX, a recently
proposed compute-enabled CXL memory expander for dense re-
trieval acceleration, to also accelerate attention mechanis in trans-
former based LLMs. LongSight leverages DReX to implement a
highly efficient sparse attention mechanism, made possible by a the
sign-concordance filtering algorithm, specifically designed to match
the capabilities of processing-in-memory hardware. We demon-
strate that LongSight, equipped with a single GPU and a single
DReX device, can efficiently support context lengths of up to 1
million tokens for state-of-the-art LLaMA models.

Acknowledgments

This work was supported in part by NSF awards CCF-2530337 and
CCF-2312741, as well as ACE, one of the seven centers in JUMP 2.0, a
Semiconductor Research Corporation (SRC) program sponsored by
DARPA. Any opinions, findings, conclusions, and recommendations
expressed in this material are those of the authors and do not
necessarily reflect those of the sponsors.

A Artifact Appendix
A.1 Abstract

We provide a software implementation of LongSight’s sparse attention
algorithm. LongSight’s sparse attention is implemented as a pytorch
module and directly replaces the Llama 3 attention module in the Hug-
gingFace implementation of Llama 3. We also provide example code
which tests a sparse attention configuration against dense attention
and shows the computation of perplexity as well as filter ratio.

A.2 Artifact check-list (meta-information)

Algorithm: Sparse Attention

Run-time environment: Linux

Hardware: NVIDIA GPU

How much disk space required (approximately)?: 20 GB
How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes

e How much time is needed to complete experiments (approxi-
mately)?: 5 minutes

Publicly available: Yes

Archived: https://doi.org/10.5281/zenodo.16937763

A.3 Description

A.3.1 How to access. Access the source code for LongSight’s sparse
attention software implementation:

o https://doi.org/10.5281/zenodo.16937763

Derrick Quinn, E. Ezgi Yicel, Jinkwon Kim, José F. Martinez, and Mohammad Alian

A.4 Installation

Please follow the setup & installation instructions provided in the
README.md file provided at the DOL

A.5 Evaluation and expected results

After completing setup, the src/example.py script can be used to
benchmark an example configuration of LongSight’s sparse atten-
tion. This script prints baseline perplexity, sparse perplexity, and
filter ratio on an example passage.

References

[1] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico
Lebrén, and Sumit Sanghai. 2023. GQA: Training Generalized Multi-Query
Transformer Models from Multi-Head Checkpoints. arXiv:2305.13245 [cs.CL]
https://arxiv.org/abs/2305.13245

[2] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. arXiv:2004.05150 [cs.CL] https://arxiv.org/abs/2004.
05150

[3] NVIDIA Developer Blog. 2025. Demystifying Al Inference Deployments
for Trillion-Parameter Large Language Models. Online; accessed 2025-06-
21. https://developer.nvidia.com/blog/demystifying-ai-inference-deployments-
for-trillion-parameter-large-language-models/

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL] https://arxiv.org/abs/2005.14165

[5] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-specific hardware
accelerators. Commun. ACM 63, 7 (2020), 48—57. doi:10.1145/3361682

[6] Fabrice Devaux. 2019. UPMEM Processing in Memory: DRAM is Becoming a True
Processing Unit. In Proceedings of the 31st Hot Chips Symposium (HC31). Stanford,
CA, USA. https://old.hotchips.org/hc31/HC31_1.4 UPMEM . FabriceDevaux.v2_1.
pdf Accessed: November 23, 2024.

[7] Yunchao Gong and Svetlana Lazebnik. 2011. Iterative quantization: A procrustean
approach to learning binary codes. In CVPR 2011. 817-824. doi:10.1109/CVPR.
2011.5995432

[8] Yufeng Gu, Alireza Khadem, Sumanth Umesh, Ning Liang, Xavier Servot, Onur
Mutlu, Ravi Iyer, and Reetuparna Das. 2025. PIM Is All You Need: A CXL-
Enabled GPU-Free System for Large Language Model Inference. arXiv preprint
arXiv:2502.07578 (2025).

[9] Guseul Heo, Sangyeop Lee, Jachong Cho, Hyunmin Choi, Sanghyeon Lee,
Hyungkyu Ham, Gwangsun Kim, Divya Mahajan, and Jongse Park. 2024. Ne-
upims: Npu-pim heterogeneous acceleration for batched llm inferencing. In
Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3. 722-737.

[10] Hewlett Packard Enterprise. 2025. HPE Superdome Flex 280 Interactive Demo.
https://apps.kaonadn.net/5185710160084992/product. html#1/199;C187. Accessed:
2025-04-09.

Hewlett Packard Enterprise. 2025. HPE Superdome: Mission-Critical Servers.
https://www.hpe.com/us/en/servers/superdome.html. Accessed: 2025-04-09.
Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Monishwaran Mah-
eswaran, June Paik, Michael W. Mahoney, Kurt Keutzer, and Amir Gholami.
2024. Squeezed Attention: Accelerating Long Context Length LLM Inference.
arXiv:2411.09688 [cs.CL] https://arxiv.org/abs/2411.09688

Xinting Huang and Nora Hollenstein. 2023. Long-Range Language Modeling with
Selective Cache. Findings of the Association for Computational Linguistics: EMINLP
2023 (December 2023), 4838-4858. doi:10.18653/v1/2023.findings-emnlp.321
[14] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Computer Architecture Letters 15, 1 (2016),
45-49. doi:10.1109/LCA.2015.2414456

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Efficient
Transformer. arXiv:2001.04451 [cs.LG] https://arxiv.org/abs/2001.04451
Sukhan Lee, Shin-haeng Kang, Jaechoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun
Kim, O Seongil, Anand Iyer, David Wang, Kyomin Sohn, and Nam Sung Kim. 2021.
Hardware Architecture and Software Stack for PIM Based on Commercial DRAM
Technology : Industrial Product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 43-56. doi:10.1109/ISCA52012.2021.
00013

[11

[12

[13

=
&

[16

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://developer.nvidia.com/blog/demystifying-ai-inference-deployments-for-trillion-parameter-large-language-models/
https://developer.nvidia.com/blog/demystifying-ai-inference-deployments-for-trillion-parameter-large-language-models/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3361682
https://old.hotchips.org/hc31/HC31_1.4_UPMEM.FabriceDevaux.v2_1.pdf
https://old.hotchips.org/hc31/HC31_1.4_UPMEM.FabriceDevaux.v2_1.pdf
https://doi.org/10.1109/CVPR.2011.5995432
https://doi.org/10.1109/CVPR.2011.5995432
https://apps.kaonadn.net/5185710160084992/product.html#1/199;C187
https://www.hpe.com/us/en/servers/superdome.html
https://arxiv.org/abs/2411.09688
https://arxiv.org/abs/2411.09688
https://doi.org/10.18653/v1/2023.findings-emnlp.321
https://doi.org/10.1109/LCA.2015.2414456
https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/2001.04451
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/ISCA52012.2021.00013

LongSight: Compute-Enabled Memory to Accelerate Large-Context LLMs via Sparse Attention

[17] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,

Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktaschel,
Sebastian Riedel, and Douwe Kiela. 2021. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. arXiv:2005.11401 [cs.CL] https://arxiv.org/abs/
2005.11401

Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Com-
puting Machinery, New York, NY, USA, 574-587. doi:10.1145/3575693.3578835
Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator. IEEE Com-
puter Architecture Letters 19, 2 (2020), 106-109. doi:10.1109/LCA.2020.2973991
Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang
Gan, and Song Han. 2024. QServe: W4A8KV4 Quantization and System Co-design
for Efficient LLM Serving. arXiv:2405.04532 [cs.CL] https://arxiv.org/abs/2405.
04532

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agarwal,
Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-Enabled
Tiered-Memory. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Volume 3
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 742-755. doi:10.1145/3582016.3582063

Mistral Al team. 2023. Announcing Mistral 7B. https://mistral.ai/news/
announcing-mistral-7b. Online; accessed 2025-06-19.

Timothy Prickett Morgan. 2021. Big Iron Will Always Drive Big Spend-
ing. https://www.nextplatform.com/2021/09/21/big-iron-will-always-drive-big-
spending/ Accessed: 2025-04-09.

CJ Newburn. 2024. GPUs as Data Access Engines. Conference presenta-
tion. https://files futurememorystorage.com/proceedings/2024/20240808_NETC-
301-1_Newburn.pdf Presentation at the Flash Memory Summit (FMS).
NVIDIA. 2025. NIM LLMs Benchmarking: Performance. Online; accessed 2025-10-
06. Benchmark latency and throughput numbers for Llama models via NVIDIA
NIM.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Ja-
cob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David
Luan, Charles Sutton, and Augustus Odena. 2021. Show Your Work: Scratchpads
for Intermediate Computation with Language Models. arXiv:2112.00114 [cs.LG]
https://arxiv.org/abs/2112.00114

OpenAl 2025. gpt-oss-120b & gpt-oss-20b Model Card. Online; accessed
2025-08-28. arXiv arXiv:2508.10925 (2025). doi:10.48550/arXiv.2508.10925
OpenAL 2025. Introducing Deep Research. https://openai.com/index/introducing-
deep-research/. Online; accessed 2025-04-11.

Jaehyun Park, Jaewan Choi, Kwanhee Kyung, Michael Jaemin Kim, Yongsuk
Kwon, Nam Sung Kim, and Jung Ho Ahn. 2024. AttAcc! Unleashing the Power of
PIM for Batched Transformer-based Generative Model Inference. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS °24).
Association for Computing Machinery, New York, NY, USA, 103-119. doi:10.
1145/3620665.3640422

Jeongmin Brian Park, Vikram Sharma Mailthody, Zaid Qureshi, and Wen-mei
Hwu. 2024. Accelerating Sampling and Aggregation Operations in GNN Frame-
works with GPU Initiated Direct Storage Accesses. Proc. VLDB Endow. 17, 6 (Feb.
2024), 1227-1240. doi:10.14778/3648160.3648166

Sang-Soo Park, KyungSoo Kim, Jinin So, Jin Jung, Jonggeon Lee, Kyoungwan
Woo, Nayeon Kim, Younghyun Lee, Hyungyo Kim, Yongsuk Kwon, Jinhyun Kim,
Jieun Lee, YeonGon Cho, Yongmin Tai, Jeonghyeon Cho, Hoyoung Song, Jung Ho
Ahn, and Nam Sung Kim. 2024. An LPDDR-based CXL-PNM Platform for TCO-
efficient Inference of Transformer-based Large Language Models. In 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
970-982. doi:10.1109/HPCA57654.2024.00078

Yeonhong Park, Jake Hyun, SangLyul Cho, Bonggeun Sim, and Jae W. Lee. 2024.
Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs.
arXiv (2024). doi:10.48550/arXiv.2402.10517 arXiv:2402.10517 [cs.LG]

Project Gutenberg. 1971. Project Gutenberg. https://www.gutenberg.org
Derrick Quinn, E. Ezgi Yiicel, Martin Prammer, Zhenxing Fan, Kevin Skadron,
Jignesh M. Patel, José F. Martinez, and Mohammad Alian. 2025. DReX: Accurate
and Scalable Dense Retrieval Acceleration via Algorithmic-Hardware Codesign.
In Proceedings of the 52nd Annual International Symposium on Computer Archi-
tecture (ISCA ’25). Association for Computing Machinery, New York, NY, USA,
1108-1124. doi:10.1145/3695053.3731079

Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna
Masood, Jeongmin Park, Jinjun Xiong, C. J. Newburn, Dmitri Vainbrand, I-Hsin
Chung, Michael Garland, William Dally, and Wen-mei Hwu. 2023. GPU-Initiated
On-Demand High-Throughput Storage Access in the BaM System Architecture.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC,
Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 325-339. doi:10.1145/3575693.3575748

Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate
prediction of CMOS device performance from 180nm to 7nm. Integration 58
(2017), 74-81. doi:10.1016/j.v1s1.2017.02.002

Gemma Team and Google DeepMind. 2025. Gemma 3 Technical Report. arXiv
(12 March 2025). doi:10.48550/arXiv.2503.19786 arXiv:2503.19786

Llama team. 2024. The Llama 3 Herd of Models. https://ai.meta.com/research/
publications/the-1lama-3-herd- of-models/

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL] https:
//arxiv.org/abs/2201.11903

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. 2023. Ef-
ficient Streaming Language Models with Attention Sinks. arXiv arXiv:2309.17453
(2023). doi:10.48550/arXiv.2309.17453 arXiv:2309.17453 [cs.CL]

Xiao Xiong, Zhaorui Chen, Yue Liang, Minghao Tian, Jiaxing Shang, Jiang Zhong,
and Dajiang Liu. 2025. DynaX: Sparse Attention Acceleration with Dynamic
X:M Fine-Grained Structured Pruning. Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) 2 (2025), 260-274. doi:10.1145/3676641.3715991

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv:2210.03629 [cs.CL] https://arxiv.org/abs/2210.03629

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan
Zhang, Zhenda Xie, YX Wei, Lean Wang, Zhiping Xiao, et al. 2025. Native
sparse attention: Hardware-aligned and natively trainable sparse attention. arXiv
preprint arXiv:2502.11089 (2025).

Yifan Yuan, Ren Wang, Narayan Ranganathan, Nikhil Rao, Sanjay Kumar,
Philip Lantz, Vivekananthan Sanjeepan, Jorge Cabrera, Atul Kwatra, Rajesh
Sankaran, Ipoom Jeong, and Nam Sung Kim. 2024. Intel Accelerators Ecosys-
tem: An SoC-Oriented Perspective : Industry Product. In 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA). 848-862.
doi:10.1109/ISCA59077.2024.00066

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1109/LCA.2020.2973991
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2405.04532
https://doi.org/10.1145/3582016.3582063
https://mistral.ai/news/announcing-mistral-7b
https://mistral.ai/news/announcing-mistral-7b
https://www.nextplatform.com/2021/09/21/big-iron-will-always-drive-big-spending/
https://www.nextplatform.com/2021/09/21/big-iron-will-always-drive-big-spending/
https://files.futurememorystorage.com/proceedings/2024/20240808_NETC-301-1_Newburn.pdf
https://files.futurememorystorage.com/proceedings/2024/20240808_NETC-301-1_Newburn.pdf
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://doi.org/10.48550/arXiv.2508.10925
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://doi.org/10.1145/3620665.3640422
https://doi.org/10.1145/3620665.3640422
https://doi.org/10.14778/3648160.3648166
https://doi.org/10.1109/HPCA57654.2024.00078
https://doi.org/10.48550/arXiv.2402.10517
https://arxiv.org/abs/2402.10517
https://www.gutenberg.org
https://doi.org/10.1145/3695053.3731079
https://doi.org/10.1145/3575693.3575748
https://doi.org/10.1016/j.vlsi.2017.02.002
https://doi.org/10.48550/arXiv.2503.19786
https://arxiv.org/abs/2503.19786
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.48550/arXiv.2309.17453
https://arxiv.org/abs/2309.17453
https://doi.org/10.1145/3676641.3715991
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://doi.org/10.1109/ISCA59077.2024.00066

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Transformer-Based LLM
	2.2 Tiered GPU Memory and CXL

	3 State-of-the-Art in Long-Context Generation
	3.1 Software-Based Sparse Attention
	3.2 Hardware-Based Attention Acceleration

	4 LongSight: Algorithm-System Codesign for Large-Context Attention
	5 LongSight Algorithm Design
	5.1 Overview
	5.2 Baseline Algorithm Results
	5.3 Hybrid Short/Long-Range Attention
	5.4 ITQ-Enhanced Sparse Attention

	6 System Integration
	7 Architecture
	7.1 Overview
	7.2 DReX CXL Controller (DCC) Extensions
	7.3 Data Layout
	7.4 NMA Controller

	8 Methodology
	8.1 Evaluating the Hybrid Attention Algorithm
	8.2 Modeling Performance

	9 Experimental Results
	9.1 Inference Acceleration
	9.2 DReX and LongSight Latency Breakdowns
	9.3 Comparison with Sliding Window Attention
	9.4 Power and Area Analysis

	10 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

	References

